8 класс

Учебник физика перышкин 8 класс фгос – Учебник Физика 8 класс Перышкин

Учебник Физика 8 класс Перышкин

Учебник Физика 8 класс Перышкин — 2014-2015-2016-2017 год:



Читать онлайн (cкачать в формате PDF) — Щелкни!


<Вернуться> | <Пояснение: Как скачать?>

Пояснение: Для скачивания книги (с Гугл Диска), нажми сверху справа — СТРЕЛКА В ПРЯМОУГОЛЬНИКЕ . Затем в новом окне сверху справа — СТРЕЛКА ВНИЗ . Для чтения — просто листай колесиком страницы вверх и вниз.


Текст из книги:

А. В. Перышкин
ФИЗИКА
■*>’DPO0Q
I Электронное | приложение ВЕРТИКАЛЬ т www.drofa.ru
8
А. В. Перышкин
ФИЗИКА
Учебник для общеобразовательных учреждений
Рекомендовано Министерством образования и науки Российской Федерации
ВЕРТИКАЛЬ
Москва
■»’ орофа
2013
8
УДК 373.167.1:53 ББК 22.3я72 П27
Учебник получил положительное заключение Российской академии наук (№ 10106-5215/26 от 29.09.2011) и Российской академии образования (№ 01-5/7д-516 от 24.10.2011)
Учебник доработан и подготовлен к изданию Н. В. Филонович
Перышкин, А. В.
П27 Физика. 8 кл.: учеб, для общеобразоват. учреждений / А. В. Перышкин. — М. : Дрофа, 2013. — 237, [3] с. : ил.
ISBN 978-5-358-09884-8
Учебник доработан в соответствии с требованиями Федерального государственного образовательного стандарта, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.
Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.
УДК 373.167.1:53 ББК 22.3я72
ISBN 978-5-358-09884-8
‘ООО «Дрофа*, 2013
1
Примеры тепловых явлений: а — таяние льда; б — замерзание воды
ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА
В окружающем нас мире происходят различные физические явления, которые связаны с нагреванием и охлаждением тел. Мы знаем, что при нагревании холодная вода вначале становится тёплой, а затем горячей.
Такими словами, как «холодный», «тёплый» и «горячий», мы указываем на различную степень нагретости тел, или, как говорят в физике, на различную температуру тел. Температура горячей воды выше температуры холодной. Температура воздуха летом выше, чем зимой.
Температуру тел измеряют с помощью термометра и выражают в градусах Цельсия (°С).
Вам уже известно, что диффузия при более высокой температуре происходит быстрее. Это означает, что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении — уменьшается.
Следовательно, температура тела зависит от скорости движения молекул.
Тёплая вода состоит из таких же молекул, как и холодная. Разница между ними заключается лишь в скорости движения молекул.
Явления, связанные с нагреванием или охлаждением тел, с изменением температуры, называются тепловыми. К таким явлениям относятся, например, нагревание и охлаждение воздуха, таяние льда, плавление металлов и др.
Рис. 1. Траектория движения микрочастиц краски, растворённой в воде
Плавление металла
• t д
Модель
кристаллической решётки льда
Молекулы или атомы, из которых состоят тела, находятся в непрерывном беспорядочном движении. Их количество в окружаюпдих нас телах очень велико. Так, в объёме, равном 1 см^ воды, содержится около 3,34 • молекул. Каждая молекула движется по очень сложной траектории. Это связано с тем, что, например, частицы газа, движущиеся с большими скоростями в разных направлениях, сталкиваются друг с другом и со стенками сосуда. В результате этого они изменяют свою скорость и снова продолжают движение. На рисунке 1 изображены траектории движения микроскопических частиц краски, растворённой в воде.
Поскольку со скоростью движения молекул тела связана его температура, беспорядочное движение частиц называют тепловым движением.
В жидкостях молекулы могут колебаться, вращаться и перемещаться относительно друг друга. В твёрдых телах молекулы и атомы колеблются около некоторых средних положений.
В тепловом движении участвуют все молекулы тела, поэтому с изменением характера теплового движения изменяется и состояние тела, его свойства. Так, при повышении температуры лёд начинает таять, превращаясь в жидкость. Если понижать температуру, например, ртути, то она из жидкости превращается в твёрдое тело1
Вопросы
Температура тела находится в тесной связи со средней кинетической энергией молекул. Чем выше температура тела, тем больше средняя кинетическая энергия его молекул. При понижении температуры тела средняя кинетическая энергия его молекул уменьшается.
1. Какие тепловые явления вы знаете? 2. Что характеризует температура? 3. Как связана температура тела со скоростью движения его молекул? 4. Чем отличается движение молекул в газах, жидкостях и твёрдых телах?
ВНУТРЕННЯЯ ЭНЕРГИЯ
Тела, обладающие ки-нетической^рнергией: а — летящая птица; б —движущийся самолёт ‘ Ш
При изучении физики рассматриваются механические, тепловые, световые, электрические и другие явления. С некоторыми механическими явлениями мы уже познакомились. Известно также, что суш;ествует два вида механической энергии: кинетическая и потенциальная.
Всякое движуш;ееся тело обладает кинетической энергией. Так, например, кинетической энергией обладает летящая птица, движущиеся самолёт, мяч, текущая вода и т. д. Кинетическая энергия тела зависит от его массы и от скорости движения тела.
Потенциальная энергия определяется взаимным положением взаимодействующих тел или его отдельных частей. Например, потенциальной энергией обладают поднятый над землёй камень, сжатая или растянутая пружина и т. д.
Кинетическая и потенциальная энергия — это два вида механической энергии, они могут превращаться друг в друга.
Как же происходит превращение одного вида энергии в другой?
Свинцовый шар, лежащий на свинцовой плите, поднимем вверх и отпустим (рис. 2, а). При падении скорость шара увеличивается, а высота подъёма уменьшается. Следовательно, его кинетическая энергия возрастает, а по-
Тела, обладающие потенциальной энергией: а—деформированная пружина: б — камень, поднятый над Землёй
—’VA’
тенциальная уменьшается. Это значит, что происходит превращение потенциальной энергии шара в кинетическую. После того как шар ударится о свинцовую плиту, он остановится (рис. 2, б). Его кинетическая и потенциальная энергия будут равны нулю.
Значит ли это, что механическая энергия, которой обладал шар, бесследно исчезла? По-видимому, нет.
Механическая энергия превратилась в другую форму энергии. Что же представляет собой эта другая форма энергии? Рассмотрим шар и плиту после удара. Оказывается, что шар немного сплюснулся, а на плите возникла небольшая вмятина. Шар и плита при ударе деформировались. Измерим температуру шара и плиты сразу после удара. Мы заметим, что они нагрелись.
Таким образом, в результате удара шара о плиту изменилось состояние этих тел — они деформировались и нагрелись. Но если изменилось состояние тел, то изменилась и энергия частиц, из которых состоят тела. Действительно, мы знаем, что при нагревании тела увеличивается средняя скорость движения молекул. Значит, увеличивается их средняя кинетическая энергия. Молекулы обладают также и потенциальной энергией. Ведь они взаимодействуют друг с другом: притягиваются, а при дальнейшем сближении — отталкиваются. Когда тело деформировалось, то изменилось взаимное расположение его молекул, а значит, изменилась и их потенциальная энергия.
Итак, при соударении изменилась и кинетическая, и потенциальная энергия молекул свинца. Следовательно, механическая энергия, которой обладал шар в начале опыта, не исчезла. Она перешла в энергию молекул.
Рис. 2. Превращение механической энергии свинцового шара
I
Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.
■Летящая пуля кромё^ ; Ёнутрённей энергии I обладает и механической
При изучении тепловых явлений учитывают только энергию молекул, потому что главным образом она изменяется в этих явлениях. В дальнейшем, рассматривая внутреннюю энергию тела, мы будем понимать под ней кинетическую энергию теплового движения и потенциальную энергию взаимодействия молекул тела.
Вернёмся к опыту со свинцовым шаром и плитой (см. рис. 2).
При остановке шара механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию шара.
Итак, кроме механической энергии, существует ещё один вид энергии. Это внутренняя энергия тела.
Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов. (Более подробно это будет изучено в 10 классе.)
Поднимем тело, например мяч, над столом. При этом расстояние между молекулами мяча не меняется. Значит, не меняется и потенциальная энергия взаимодействия молекул. Следовательно, поднимая мяч, мы не изменяем его внутреннюю энергию.
Будем двигать мяч относительно стола. От этого его внутренняя энергия также не изменится.
Следовательно, внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.
Тело, имея некоторый запас внутренней энер

uchebnik-skachatj-besplatno.com

Учебник по физике 8 класс Перышкин Ханнанова читать онлайн

Выберите нужную страницу с уроками, заданиями (задачами) и упражнениями из учебника по физике за 8 класс — Перышкин Ханнанова. Онлайн книгу удобно смотреть (читать) с компьютера и смартфона. Электронное учебное пособие подходит к разным годам: от 2011-2012-2013 до 2015-2016-2017 года — создано по стандартам ФГОС.

Номер № страницы:


2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95; 96; 97; 98; 99; 100; 101; 102; 103; 104; 105; 106; 107; 108;


109; 110; 111; 112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126; 127; 128; 129; 130; 131; 132; 133; 134; 135; 136; 137; 138; 139; 140; 141; 142; 143; 144; 145; 146; 147; 148; 149; 150; 151; 152; 153; 154; 155; 156; 157; 158; 159; 160; 161; 162; 163; 164; 165; 166; 167; 168; 169; 170; 171; 172; 173; 174; 175; 176; 177; 178; 179; 180; 181; 182; 183; 184; 185; 186; 187; 188; 189; 190; 191; 192; 193; 194; 195; 196; 197; 198; 199; 200; 201; 202; 203; 204; 205; 206; 207; 208; 209; 210; 211; 212; 213; 214; 215; 216; 217; 218; 219; 220; 221; 222; 223; 224; 225; 226; 227; 228; 229; 230; 231; 232; 233; 234; 235; 236; 237; 238; 239; 240


Чтобы читать онлайн или скачать в формате pdf, нажмите ниже.
Учебник — Нажми!

uchebnik-tetrad.com

Физика. 8 класс. Учебник  — Перышкин А.В.  

Учебник 8 класса Перышкина по физике доработан в соответствии ФГОС ООО. Одобрен РАО – РАН, рекомендован МО РФ в качестве учебника СОШ. Включен в ФПУ. Красочные иллюстрации, разнообразные, хорошо продуманные  вопросы – задания в комплексе с дополнительными сведениями, любопытными фактами должны способствовать эффективному усвоению учебного материала.

-Содержание-

ОГЛАВЛЕНИЕ
ТЕПЛОВЫЕ ЯВЛЕНИЯ 03
Тепловое движение. Температура 03
Внутренняя энергия 05
Способы изменения внутренней  9
Теплопроводность 12
Конвекция 15
ЭТО ЛЮБОПЫТНО…17
Примеры конвекции  17
Излучение 19
ЭТО ЛЮБОПЫТНО… 20
Термос 21
Теплопередача  растительный мир 22
Количество теплоты.  22
Удельная теплоёмкость 25
Расчёт количества теплоты,  27
Энергия топлива. 31
Закон сохранения – превращения энергии  33
ЭТО ЛЮБОПЫТНО…35
Использование энергии Солнца  36
Агрегатные состояния вещества 37
Плавление и отвердевание  39
График плавления – отвердевания кристаллических тел 41
ЭТО ЛЮБОПЫТНО…42
Аморфные тела. 43
Удельная теплота плавления 44
Испарение. 48
Поглощение энергии  52
Кипение 54
Влажность воздуха. 57
Удельная теплота парообразования  61
Работа газа  634
Двигатель внутреннего сгорания 65
Паровая турбина 69
КПД теплового двигателя 70
ИТОГИ ГЛАВЫ 72
ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ 76
Электризация тел  76
Электроскоп 79
Электрическое поле 81
Делимость электрического заряда.  83
Строение атомов 86
Объяснение электрических явлений 88
Проводники, полупроводники  91
ЭТО ЛЮБОПЫТНО…94
Полу

skachaj24.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *