Математика 5 класс. Задания и упражнения. Натуральные числа.
Натуральные числа
Сравнение, сложение и вычитание натуральных чисел.
Базовый уровень
Задание 1
Какое из чисел 2/7, 837, 9/15, 1592 может означать количество кирпичей на строительном складе? Как называются эти числа?
- Решение
- 837, 1592.
- Эти числа называются натуральными.
Задание 2
Прочитайте каждое из чисел:
1) 385 | 2) 703 | 3) 1 907 | 4) 34 856 |
5) 591 | 6) 862 | 7) 8 057 | 8) 82 930 |
- Решение
- 1 — триста восемьдесят пять,
- 2 — семьсот три,
- 3 – тысяча девятьсот семь,
- 4 – тридцать четыре тысячи восемьсот пятьдесят шесть,
- 5 – пятьсот девяносто один,
- 6 – восемьсот девяносто два,
- 7 — восемь тысяч пятьдесят семь,
- 8 – восемьдесят две тысячи девятьсот тридцать.
Задание 3
Назовите сколько единиц, десятков, сотен и тысяч в каждом из чисел:
1) 793 | 2) 6 004 | 3) 201 |
4) 39 862 | 5) 856 398 | 6) 6 836 539 |
- Решение
- 1 – 793 единицы, 79 десятков, 7 сотен;
- 2 – 6 004 единицы, 600 десятков, 60 сотен, 6 тысяч;
- 3 — 201 единица, 20 десятков, 2 сотни;
- 4 – 39 862 единицы, 3 986 десятков, 398 сотен, 39 тысяч;
- 5 – 856 398 единиц, 85 639 десятков, 8 563 сотен, 856 тысяч;
- 6 — 6 836 539 единиц, 683 653 десятков, 68 365 сотен, 6 836 тысяч.
Задание 4
Запишите числа цифрами:
- 1) Семьсот девяносто четыре;
- 2) Три тысячи триста сорок восемь;
- 3) Восемьсот двадцать один;
- 4) Триста восемь тысяч семьдесят четыре;
- 5) Один миллион пятьсот тридцать одна тысяча шестьсот семьдесят три;
- 6) Тринадцать миллионов 98 тысяч сто тридцать один.
Решение
1) 794 | 2) 3 348 | 3) 821 |
4) 308 074 | 5) 1 531 673 | 6) 13 098 131 |
Задание 5
Запишите каждое из чисел словами:
30, 857, 208, 1029, 14845.
Решение
Тридцать, восемьсот пятьдесят сем, двести восемь, тысяча двадцать девять, четырнадцать тысяч восемьсот сорок пять.
Задание 6
Расставьте знаки больше или меньше:
308 … 380 | 7 591 … 7 951 | 47 805 … 91 000 | 359 000 … 68 000 |
192 … 180 | 3 829 … 6 350 | 71 003 … 17 300 | 296 038 … 269 380 |
Решение
308 < 380 | 7 591 < 7 951 | 47 805 < 91 000 | 359 000 < 68 000 |
192 > 180 | 3 829 < 6 350 | 71 003 > 17 300 | 296 038 > 269 380 |
Задание 7
Выполните сложение:
200 + 300 = | 700 + 59 = | 340 + 60 = | 37 + 163 = |
417 + 162 = | 417 + 82 = | 3002 + 6003 = | 450 + 540 = |
Решение
200 + 300 = 500 | 700 + 59 = 759 | 340 + 60 = 400 | 37 + 163 = 200 |
417 + 162 = 579 | 417 + 82 = 499 | 3002 + 6003 = 9005 | 450 + 540 = 990 |
Задание 8
Выполните вычитание:
133 — 33 = | 860 — 177 = | 500 — 387 = | 1384 — 1262 = |
457 — 391 = | 293 — 290 = | 5827 — 2268 = | 7545 — 5676 = |
Решение
133 — 33 = 100 | 860 — 177 = 683 | 500 — 387 = 113 | 1384 — 1262 = 122 |
457 — 391 = 66 | 293 — 290 = 3 | 5827 — 2268 = 3559 | 7545 — 5676 = 1869 |
Задание 9
Решите задачу:
До обеда в магазине было продано 48 кг помидор, а после обеда на 14 кг меньше. Сколько кг помидор было продано в магазине после обеда?
- Решение
- 1) 48 – 14 = 34 (кг).
- Ответ: после обеда в магазине было продано 34 кг помидор.
Задание 10
Найдите значение выражения:
(34 + 15) — 24 = | 64 — (25 + 14) = | (36 + 34) — 24 = |
(13 + 58) — 28 = | 36 — (16 + 29) = | (43 + 29) — 23 = |
Решение
(34 + 15) — 24 = 25 | 64 — (25 + 14) = 25 | (36 + 34) — 24 = 46 |
(13 + 58) — 28 = 43 | 36 — (16 + 19) = 1 | (43 + 29) — 23 = 49 |
Задание 11
В вазе было 37 конфет. Шестеро детей съели по 3 конфеты и двое по 4 конфеты. Сколько конфет осталось в вазе?
- Решение
- 1) 6 * 3 = 18 (конфет) съели шестеро детей;
- 2) 3 * 4 = 12 (конфет) съели четверо детей;
- 3) 18 + 12 = 30 (конфет) всего съели дети;
- 4) 37 – 30 = 7 (конфет).
- Ответ: в вазе осталось 7 конфет.
Средний уровень
Задание 1
Запишите числа цифрами:
- 1. Восемьсот семьдесят миллионов девять;
- 2. Два миллиарда четыреста пятьдесят девять миллионов триста шестьдесят восемь тысяч пятьсот семьдесят девять;
- 3. Тридцать миллиардов четыре миллиона двадцать три;
- 4. Восемьсот миллиардов шесть;
- 5. 248 миллиарда 6 миллионов 18 тысяч сто;
- 6. 503 миллиарда 241 тысяча 64.
Решение
1) 87 000 009 | 2) 2 459 368 579 | 3) 30 004 000 023 | 4) 800 000 000 006 | 5) 248 006 018 100 | 6) 503 000 241 064 |
Задание 2
Запишите числа, как сумму разрядных слагаемых:
1) 349 | 2) 809 | 3) 2475 | 4) 3008 |
Решение
1) 349 = 300 + 40 + 9 | 2) 809 = 800 + 9 | 3) 2475 = 2000 + 400 + 70 + 5 | 4) 3008 = 3000 + 8 |
Задание 3
Расставьте знаки больше или меньше:
852 618 … 852 681 | 2 545 033 … 2 545 300 | 300 300 003 … 300 003 300 |
Решение
852 618 < 852 681 | 2 545 033 < 2 545 300 | 300 300 003 > 300 003 300 |
Задание 4
Запишите числа в порядке возрастания:
98362, 6395, 1103672, 492031, 10238, 2958, 300271, 300713, 490952, 192, 74.
Решение
74, 192, 2 958, 6 395, 10 238, 98 362, 300 271, 300 713, 490 952, 492 031, 1 103 672.
Задание 5
Запишите натуральные числа, которые меньше 82 и больше 74.
Решение
75, 76, 77, 78, 79, 80, 81.
Задание 6
Какое количество натуральных чисел расположено между числами:
1) 57 и 64; | 2) 238 и 261; | 3) 167 и 192; | 4) 342 и 409; |
Решение
1) 6; | 2) 21; | 3) 24; | 4) 66. |
Задание 7
Выполните сложение:
27 592 + 593 089 = | 59 003 + 12 903 = | 129 301 + 739 912 = |
60 018 + 224 983 = | 30 283 + 45 037 = | 884 916 + 294 001 = |
Решение
27 592 + 593 089 = 620 681 | 59 003 + 12 903 = 71 906 | 129 301 + 739 912 = 869 213 |
60 018 + 224 983 = 285 001 | 30 283 + 45 037 = 75 320 | 884 916 + 294 001 = 1 178 917 |
Задание 8
Вычислите:
18м 48см + 26м 39см = ; | 45т 390 кг + 21т 31кг = . |
Решение
18м 48см + 26м 39см = 44м 87 см; | 45т 390 кг + 21т 31кг = 66т 421кг. |
Задание 9
Выполните вычитание:
49 081 — 19 090 = | 18 928 — 18 098 = | 397 802 — 65 834 = |
72 305 — 50 923 = | 25 730 — 21 829 | 450 038 — 375 340 = |
Решение
49 081 — 19 090 = 29 991 | 18 928 — 18 098 = 830 | 397 802 — 65 834 = 331 968 |
72 305 — 50 923 = 21 382 | 25 730 — 21 829 = 3 901 | 450 038 — 375 340 = 74 698 |
Задание 10
Найдите значения выражений:
469 + 1 843 — 1 992 = | 4 578 — 2640 + 3 654 = |
9 029 — 6 230 — 1 389 = | 19 463 + 7 356 + 35 230 = |
Решение
469 + 1 843 — 1 992 = 320 | 4 578 — 2640 + 3 654 = 5 592 |
9 029 — 6 230 — 1 389 = 1 410 | 19 463 + 7 356 + 35 230 = 62 049 |
Задание 11
Вычислите:
6 036 — (1 343 + 2 876) = | 9 803 — (6 357 + 1 996) = |
4 378 — (2 195 — 1 880) = | 6 306 — (4 381 — 2 270) = |
Решение
6 036 — (1 343 + 2 876) = 1 817 | 9 803 — (6 357 + 1 996) = 1 450 |
4 378 — (2 195 — 1 880) = 4 063 | 6 306 — (4 381 — 2 270) = 4 195 |
Задание 12
В швейную мастерскую привезли 150 м ткани. В первую неделю было израсходовано 46 метров, а во вторую 38 метров. Сколько метров ткани осталось в мастерской?
Решение
- 1) 46 + 38 = 84 (м) ткани израсходовали за 2 недели;
- 2) 150 – 84 = 66 (м) ткани.
- Ответ: в мастерской осталось 66 метров ткани.
Задание 13
Сравните не вычисляя:
1 487 + 372 … 183 + 1 394 | 48 391 + (3 409 + 2 809) … (2 893 + 1 908) + 48 391 |
8 934 + 490 … 822 + 8 943 | 17 429 + (6 830 + 3 402) … (7 620 + 3 420) + 17 429 |
Решение
1 487 + 372 > 183 + 1 394 | 48 391 + (3 409 + 2 809) > (2 893 + 1 908) + 48 391 |
8 934 + 490 < 822 + 8 943 | 17 429 + (6 830 + 3 402) < (7 620 + 3 420) + 17 429 |
Задание 14
Решите задачу:
В овощной магазин привезли картофель и лук. Картофеля привезли 185 кг, а лука на 48 кг меньше. Сколько всего картофеля и лука привезли в магазин?
Решение
- 1) 185 — 48 = 137 (кг) лука привезли в магазин;
- 2) 185 + 137 = 322 (кг).
- Ответ: всего привезли 322 кг лука и картофеля?
ГДЗ номер 399 математика 5 класс Мерзляк, Полонский
ГДЗ номер 399 математика 5 класс Мерзляк, Полонский
Авторы:
А.Г. Мерзляк, В.Б. Полонский, М.С. Якир
Издательства:
Просвещение, Вентана-граф 2016-2021
Серия: Алгоритм успеха
Тип книги: Учебник
Рекомендуем посмотреть
Подробное решение номер № 399 по математике для учащихся 5 класса Алгоритм успеха , авторов Мерзляк, Полонский, Якир 2016-2021
Решебник к учебнику 2021 / номер / 399
Решебник 1 / номер / 399
Видеорешение / номер / 399
Подтяни успеваемость и увеличь шансы успешной сдачи экзаменов на
EDN.ru
– мультимедийной платформе для проведения индивидуальных онлайн-занятий с репетиторами!
Решебник 2 / номер / 399
Отключить комментарии
Отключить рекламу
Математика 5 класс — Мир математики
I. Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа и поставить в частном запятую тогда, когда закончится деление целой части.
Примеры.
Выполнить деление: 1) 96,25:5; 2) 4,78:4; 3) 183,06:45.
Решение.
Пример 1) 96,25:5.
Делим «уголком» так, как делят натуральные числа. После того, как сносим цифру 2 (число десятых — первая цифра после запятой в записи делимого 96,25), в частном ставим запятую и продолжаем деление.
Ответ: 19,25.
Пример 2) 4,78:4.
Делим так, как делят натуральные числа. В частном поставим запятую сразу, как снесем 7 — первую цифру после запятой в делимом 4,78. Продолжаем деление дальше. При вычитании 38-36 получаем 2, но деление не окончено. Как поступаем? Мы знаем, что в конце десятичной дроби можно приписывать нули — от этого значение дроби не изменится. Приписываем нуль и делим 20 на 4. Получаем 5 — деление окончено.
Ответ: 1,195.
Пример 3) 183,06:45.
Делим как 18306 на 45. В частном поставим запятую как только снесем цифру 0 — первую цифру после запятой в делимом 183,06. Так же, как в примере 2) нам пришлось приписать нуль к числу 36 — разности чисел 306 и 270.
Ответ: 4,068.
Вывод: при делении десятичной дроби на натуральное число в частном ставим запятую сразу после того, как сносим цифру в разряде десятых делимого. Обратите внимание: все выделенные красным цветом цифры в этих трех примерах относятся к разряду десятых долей делимого.
Смотрите видео: «Как разделить десятичную дробь на натуральное число».
II. Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
Примеры.
Выполнить деление: 1) 41,56:10; 2) 123,45:100; 3) 0,47:100; 4) 8,5:1000; 5) 631,2:10000.
Решение.
Перенос запятой влево зависит от того, сколько в делителе нулей после единицы. Так, при делении десятичной дроби на 10мы будем переносить в делимом запятую влево на одну цифру; при делении на100 — перенесем запятую влево на двецифры; при делении на 1000 перенесем в данной десятичной дроби запятую на три цифры влево.
В примерах 3) и 4) пришлось приписать нули перед десятичной дробью, чтобы удобнее было переносить запятую. Однако, приписывать нули можно мысленно, и вы будете это делать, когда хорошо научитесь применять правило II для деления десятичной дроби на 10, 100, 1000 и т. д.
Смотрите видео: «Как разделить десятичную дробь на 10, 100, 1000 и т.д.»
I. Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.
Примеры. Выполнить умножение: 1) 1,25·7; 2) 0,345·8; 3) 2,391·14.
Решение.
Смотрите видео: « Как умножить десятичную дробь на натуральное число».
II. Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение , не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.
Примеры. Выполнить умножение: 1) 18, 2·0,09; 2) 3,2·0,065; 3) 0,54·12,3.
Решение.
Смотрите видео: «Умножение десятичных дробей.»
III. Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.
Примеры. Выполнить умножение: 1) 3,25·10; 2) 0,637·100; 3) 4,307·1000; 4) 2,04·1000; 5) 0,00031·10000.
Решение.
Смотрите видео: «Умножение десятичных дробей на 10, 100, 1000 и т. д.»
IV. Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
Примеры. Выполнить умножение: 1) 28,3·0,1; 2) 324,7·0,01; 3) 6,85·0,01; 4) 6179,5·0,001; 5) 92,1·0,0001.
Решение.
Смотрите видео: «Умножение десятичных дробей на 0,1; 0,001; 0,0001 и т. д.»
УМНИК. Математика: интерактивные развивающие задания, 5 класс
Интерактивные развивающие задания могут служить полезным дополнением к любым учебникам математики для 5 классов. Задания носят мотивирующий характер и предназначены для стимулирования интереса учащихся к содержанию изучаемого курса.
Демонстрационная версия
Книжка для детей и родителей
Скачать установочный файл MathGames5Lic.air (Windows/Mac)
Издательство «Лаборатория базовых знаний»,
Компьютерная реализация – «Мультимедиа-студия «Март»
Интерактивное приложение состоит из восьми блоков, каждый из которых посвящен одной из тем, изучаемых в курсе математики 5 класса: «Счет, цифры, позиционные системы счисления», «Меры», «Обыкновенные дроби», «Действия с натуральными числами: сложение и вычитание», «Умножение натуральных чисел и десятичных дробей», «Деление», «Отрицательные числа, сложение и вычитание», «Умножение и деление чисел со знаком».
Каждая тема раскрывается на примере ситуационной модели и представляется учащемуся в четырех различных форматах, имеющих разное назначение и отличающихся по степени интерактивности.
«Мультимедийный клип». Первая часть блока, которая представляет собой анимационный сюжет, задающий тему блока. Клип представляет описание игровой ситуации, в которой герои сталкиваются с некоторой проблемой, решение которой связано с определенными математическими действиями. Длительность каждого клипа составляет порядка 1 мин, визуальный ряд сопровождается стихотворным текстом. Предлагаемый сюжет ставит проблему, но не отвечает на вопрос.
«Диафильм». Для более детального просмотра описанной проблемной ситуации содержание мультипликационного клипа дополнительно представляется в виде набора статичных кадров с подписями. Это позволяет учащемуся останавливаться на каждом ключевом кадре, анализировать ход сюжета и реплики героев, то есть получить полное представление о ситуационной модели и проблеме, которая требует решения.
«Схема». Третья часть нацелена на осуществление постепенного перехода от игровой ситуации к математической проблеме. Она реализуется так же в в виде набора слайдов, визуальное решение которых основано на художественных образах, знакомых учащемуся по предыдущим частям. При этом в нижней части слайдов добавлены схематичные иллюстрации, которые предоставляют возможность учащемуся проследить, как решение проблемы, поставленной в рамках игровой ситуации, реализуется математическими методами. Такой подход призван облегчить учащимся формализацию решаемой проблемы, поддержать переход от конкретной ситуации к ее математической трактовке и как следствие способствуют переходу от ситуационной модели к математической.
«Мини-лаборатория». Понимание учащимся математической сущности поставленной проблемы закрепляется в формате интерактивных тренингов. Данное приложение предоставляет возможность поработать с математической моделью, обобщить рассмотренную в сюжете ситуацию, уяснить себе закономерности, лежащие в основе тех или иных математических операций. В каждой мини-лаборатории учащимся предлагается несколько заданий (от 2 до 3), которые выстроены от простого к сложному. Конкретные числовые значения генерируются случайным образом, что позволяет учащимся практиковаться в решении типовых задач.
Все части объединены общей стилистикой. В них действуют одни и те же персонажи, что обеспечивает учащимся возможность осваивать весь курс, оставаясь в рамках одной и той же игровой модели.
Демонстрационная версия даст вам представление о содержании всех частей программы.
Скачать установочный файл MathGames5Lic.air
Книжка для детей и родителей: скачать бесплатно pdf-файл
Внимание! Установочный файл MathGames5Lic.air — кросс-платформенная (Windows/MacOS X) версия программы на Adobe AIR. Запустить кросс-платформенную версию Вы сможете только если для Вашей операционной системы доступна среда Adobe AIR
Чтобы приобрести лицензию на программу:
— зарегистрируйтесь на сайте или войдите под своим именем;
— добавьте в заказ лицензию;
— перейдите в раздел оформления заказа и оплатите его;
— получите лицензионный ключ на указанный Вами адрес электронной почты.
Чтобы начать работу с кросс-платформенной (Windows/MacOS X) версией программы на Adobe AIR:
— загрузите и установите Adobe Air для Вашей операционной системы
— сделайте два клика на файл установки приложения для air (MathGames5Lic.air)
— следуйте инструкциям по установке air-приложения
— при первом запуске приложения введите данные полученного лицензионного ключа
Важно! При установке программы на компьютер необходим активный доступ в Интернет.
Программа имеет версии для мобильных платформ:
Android: | iPad, iPhone: |
---|---|
Файл для скачивания | Размер |
---|---|
MathGames5Lic.air — кросс-платформенная версия (Windows/MacOS X) на Adobe AIR | 18.15 Мбайт |
Книжка для детей и родителей (pdf) | 2.38 Мбайт |
Таблица разрядов и классов чисел в математике
Числа и цифры
Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.
Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …
- Единица (1) — самое маленькое число, а самого большого числа не существует.
- Ноль (0) означает, что предмета нет. Ноль не является натуральным числом.
От количества цифр в числе зависит его название.
Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.
Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.
Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.
Каждая цифра в записи многозначного числа занимает определенное место — позицию.
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.
Таблица классов:
Названия классов многозначных чисел справа налево:
- первый — класс единиц,
- второй — класс тысяч,
- третий — класс миллионов,
- четвертый — класс миллиардов,
- пятый — класс триллионов,
- шестой — класс квадриллионов,
- седьмой — класс квинтиллионов,
- восьмой — класс секстиллионов.
Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:
А теперь прочитаем число единиц каждого класса слева направо:
- 125 миллиардов 911 миллионов 723 тысячи 296.
Когда читаем класс единиц, добавлять слово «единиц» в конце не нужно.
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
- 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу.
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.
Разрядные единицы обозначают так:
- Единицы — единицами первого разряда (или простыми единицами) и пишут на первом месте справа.
- Десятки — единицами второго разряда и записывают в числе на втором месте справа.
- Сотни — единицами третьего разряда и записывают на третьем месте справа.
- Единицы тысяч — единицами четвертого разряда и записывают на четвертом месте справа.
- Десятки тысяч — единицами пятого разряда и записывают на пятом месте справа.
- Сотни тысяч — единицами шестого разряда и записывают в числе на шестом месте справа и так далее.
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Потренируемся
Пример 1. Записать цифрами число, в котором содержится:
- 55 единиц второго класса и 100 единиц первого класса;
- 110 единиц второго класса и 5 единиц первого класса;
- 7 единиц второго класса и 13 единиц первого класса.
Ответ:
- 55 100;
- 110 005;
- 7 013.
Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:
- 10 единиц равны 1 десятку;
- 10 десятков равны 1 сотне;
- 10 сотен равны 1 тысяче;
- 10 тысяч равны 1 десятку тысяч;
- 10 десятков тысяч равны 1 сотне тысяч;
- 10 сотен тысяч равны 1 миллиону.
Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.
Пример 2. Сколько сотен содержится в числе 6284?
Как рассуждаем:
В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.
Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.
Значит, в данном числе содержится 62 сотни.
Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.
Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:
- 11 627 — одиннадцать тысяч шестьсот двадцать семь.
- 31 502 — тридцать одна тысяча пятьсот два.
Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.
ГДЗ задание 344 математика 5 класс Никольский, Потапов – Telegraph
➡➡➡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ!
ГДЗ задание 344 математика 5 класс Никольский, Потапов
Подробное решение задание № 344 по математике для учащихся 5 класса , авторов Никольский , Потапов, Решетников, Шевкин 2019-2020 .
ГДЗ 5 класс Математика Никольский , Потапов , Решетников Номер №344 . Задача №344 , ГДЗ по математике за 5 класс к учебнику Никольского . Бесплатные ответы .
ГДЗ по математике 5 класс Никольский . авторы: Никольский С .М ., М .К . Потапов, Н .Н . Решетников . издательство: Просвещение 2019 год .
Гдз по математике за 5 класс Никольский , Потапов ответ на номер № 344 . Авторы: С .М . Никольский , М .К . Потапов , Н .Н . Решетников, А .В . Шевкин . Издательство: Просвещение . Тип: Учебник, МГУ — школе . Подробный решебник (ГДЗ ) по Математике за 5 (пятый ) класс . .
Задание № 344 из решебника ГДЗ на учебник по Математике 5 класса от авторов С .М . Никольский , М .К, Потапов , Н .Н . Решетников, А .В . Шевкин . Готовое домашнее задание актуально на -2019 годы .
Готовые домашние задания по математике Никольского – стоит ли пятиклассникам ими пользоваться? В 5 классе учебная программа не ГДЗ по математике за 5 класс Никольский помогают разобрать примеры и задачи, которые ребенок не успел понять в классе, запомнить . .
ГДЗ по математике за 5 класс Никольский, это сборник ответов, разделённый на четыре главы . Все упражнения соответствуют принятым стандартам и расположены так же ГДЗ к задачам на смекалку по математике за 5-6 классы Шарыгин И .Ф . можно посмотреть здесь . Номера задач .
ГДЗ (решебник) по математике за 5 класс Никольский , Потапов , Решетников, Шевкин — ответы онлайн . Чтобы ГДЗ по математике 5 класс Никольский и повысили оценки, и подтянули знания, работать с ними нужно с умом: При нехватке времени ученику достаточно списать задания . .
Математика 5 класс . Учебник . Никольский , Потапов, Решетников . Просвещение . В сборник вошли ответы по всем заданиям . Одна тысяча двести пятнадцать упражнений разбиты по «ГДЗ по Математике 5 класс Никольский» доступен онлайн, поэтому пользоваться им очень . .
Никольский , Потапов , Решетников . Просвещение . год . ГДЗ (решебник) по математике 5 класс Никольский , Потапов, Решетников, Шевкин . Школьники невероятно загружены . Приходится по 7-8 часов быть в школе, затем посещать кружки и факультативы .
Современные учебники по математике за 5 класс отличаются изложением материала в разной интерпретации . В этом поможет дополнительное пособие в формате ГДЗ по математике 5 класс авторов: Никольский С .М . Потапов М .К . Решетников Н .Н . Шевкин А .В . 342 . 343 . 344 .
На помощь придет онлайн-ГДЗ по Математике 5 класс автора Никольский С .М .,М .К . Потапов,Н .Н . Решетников, А .В . Шевкин ! Не нужно покупать книгу в магазине, тратить деньги на репетиторов или просить списать у одноклассников . Найдите номер упражнения и посмотрите . .
Учебное пособие «Математика 5 класс Учебник Никольский , Потапов, Решетников, Шевкин Просвещение» Проверку исполняемых заданий можно возложить на решебники . Что представляет собой решебник . Сборник «ГДЗ по Математике 5 класс Никольского . .
Убедись в правильности решения задачи вместе с ГДЗ по Математике за 5 класс С .М . Никольский , М .К . Потапов, Н .Н . Решетников, А .В Забота об успешном освоении ребенком школьной программы может проявляться не только в том, чтобы учиться и выполнять задания . .
ГДЗ готовые домашние задания учебника по математике 5 класс Никольский Потапов Решетников Шевкин 2019 1, 2 часть ответы ФГОС от Путина . Решебник (ответы на вопросы и задания) . .
Подробное решение задание № 344 по математике для учащихся 5 класса , авторов Никольский , Потапов, Решетников, Шевкин 2019-2020 .
ГДЗ 5 класс Математика Никольский , Потапов , Решетников Номер №344 . Задача №344 , ГДЗ по математике за 5 класс к учебнику Никольского . Бесплатные ответы .
ГДЗ по математике 5 класс Никольский . авторы: Никольский С .М ., М .К . Потапов, Н .Н . Решетников . издательство: Просвещение 2019 год .
Гдз по математике за 5 класс Никольский , Потапов ответ на номер № 344 . Авторы: С .М . Никольский , М .К . Потапов , Н .Н . Решетников, А .В . Шевкин . Издательство: Просвещение . Тип: Учебник, МГУ — школе . Подробный решебник (ГДЗ ) по Математике за 5 (пятый ) класс . .
Задание № 344 из решебника ГДЗ на учебник по Математике 5 класса от авторов С .М . Никольский , М .К, Потапов , Н .Н . Решетников, А .В . Шевкин . Готовое домашнее задание актуально на -2019 годы .
Готовые домашние задания по математике Никольского – стоит ли пятиклассникам ими пользоваться? В 5 классе учебная программа не ГДЗ по математике за 5 класс Никольский помогают разобрать примеры и задачи, которые ребенок не успел понять в классе, запомнить . .
ГДЗ по математике за 5 класс Никольский, это сборник ответов, разделённый на четыре главы . Все упражнения соответствуют принятым стандартам и расположены так же ГДЗ к задачам на смекалку по математике за 5-6 классы Шарыгин И .Ф . можно посмотреть здесь . Номера задач .
ГДЗ (решебник) по математике за 5 класс Никольский , Потапов , Решетников, Шевкин — ответы онлайн . Чтобы ГДЗ по математике 5 класс Никольский и повысили оценки, и подтянули знания, работать с ними нужно с умом: При нехватке времени ученику достаточно списать задания . .
Математика 5 класс . Учебник . Никольский , Потапов, Решетников . Просвещение . В сборник вошли ответы по всем заданиям . Одна тысяча двести пятнадцать упражнений разбиты по «ГДЗ по Математике 5 класс Никольский» доступен онлайн, поэтому пользоваться им очень . .
Никольский , Потапов , Решетников . Просвещение . год . ГДЗ (решебник) по математике 5 класс Никольский , Потапов, Решетников, Шевкин . Школьники невероятно загружены . Приходится по 7-8 часов быть в школе, затем посещать кружки и факультативы .
Современные учебники по математике за 5 класс отличаются изложением материала в разной интерпретации . В этом поможет дополнительное пособие в формате ГДЗ по математике 5 класс авторов: Никольский С .М . Потапов М .К . Решетников Н .Н . Шевкин А .В . 342 . 343 . 344 .
На помощь придет онлайн-ГДЗ по Математике 5 класс автора Никольский С .М .,М .К . Потапов,Н .Н . Решетников, А .В . Шевкин ! Не нужно покупать книгу в магазине, тратить деньги на репетиторов или просить списать у одноклассников . Найдите номер упражнения и посмотрите . .
Учебное пособие «Математика 5 класс Учебник Никольский , Потапов, Решетников, Шевкин Просвещение» Проверку исполняемых заданий можно возложить на решебники . Что представляет собой решебник . Сборник «ГДЗ по Математике 5 класс Никольского . .
Убедись в правильности решения задачи вместе с ГДЗ по Математике за 5 класс С .М . Никольский , М .К . Потапов, Н .Н . Решетников, А .В Забота об успешном освоении ребенком школьной программы может проявляться не только в том, чтобы учиться и выполнять задания . .
ГДЗ готовые домашние задания учебника по математике 5 класс Никольский Потапов Решетников Шевкин 2019 1, 2 часть ответы ФГОС от Путина . Решебник (ответы на вопросы и задания) . .
ГДЗ упражнение 73 математика 6 класс Истомина
ГДЗ номер 1038 математика 5 класс Мерзляк, Полонский
ГДЗ вправа 557 алгебра 8 класс Тарасенкова, Богатырева
ГДЗ параграф 24 24.26 геометрия 7 класс Мерзляк, Поляков
ГДЗ страница 49 английский язык 5 класс Starlight Student’s book Баранова, Эванс
ГДЗ упражнение 677 русский язык 6 класс Практика Лидман-Орлова, Пименова
ГДЗ часть №2 / конкретизируем значение 151 русский язык 3 класс Желтовская, Калинина
ГДЗ задание 271 математика 5 класс Никольский, Потапов
ГДЗ часть 2. страница 72 английский язык 8 класс rainbow Афанасьева, Михеева
ГДЗ страница 12 английский язык 4 класс Millie рабочая тетрадь (aktivity book 1) Азарова
ГДЗ задача 14 геометрия 9 класс дидактические материалы Гусев, Медяник
ГДЗ урок 77 литература 8 класс рабочая тетрадь Соловьева
ГДЗ часть 2 / упражнение 278 русский язык 4 класс Желтовская, Калинина
ГДЗ § 22 22.9 алгебра 8 класс Мерзляк, Поляков
ГДЗ номер 107 алгебра 8 класс Мерзляк, Полонский
ГДЗ учебник 2019 / часть 1. упражнение 593 (588) математика 6 класс Виленкин, Жохов
ГДЗ задача 101 физика 10 класс рабочая тетрадь Пурышева, Важеевская
ГДЗ задание 1120 математика 5 класс Никольский, Потапов
ГДЗ номер 1042 физика 7‐9 класс сборник задач Лукашик, Иванова
ГДЗ номер 925 физика 7‐9 класс сборник задач Лукашик, Иванова
ГДЗ номер 190 алгебра 8 класс Макарычев, Миндюк
ГДЗ упражнение 42 математика 5 класс Истомина
ГДЗ упражнение 455 русский язык 4 класс Нечаева, Яковлева
ГДЗ часть 2. страница 35 математика 1 класс рабочая тетрадь Нефедова
ГДЗ unit 3 / section 1-9 15 английский язык 7 класс Enjoy English Биболетова, Трубанева
ГДЗ страница 23 английский язык 10 класс New Millenium Гроза, Дворецкая
ГДЗ номер 875 математика 6 класс Мерзляк, Полонский
ГДЗ вариант 3 204 геометрия 8 класс дидактические материалы Мерзляк, Полонский
ГДЗ упражнение 425 русский язык 6 класс Ладыженская, Баранов
ГДЗ глава 3 / подведём итоги 1 математика 6 класс Бунимович, Кузнецова
ГДЗ вправа 337 алгебра 8 класс Бевз, Бевз
ГДЗ упражнение 131 русский язык 6 класс рабочая тетрадь Ефремова
ГДЗ номер 832 алгебра 9 класс Алимов, Колягин
ГДЗ вправа 1623 математика 5 класс Истер
ГДЗ страница 46 окружающий мир 2 класс тесты Плешаков, Гара
ГДЗ § / § 17 3 химия 8 класс Кузнецова, Титова
ГДЗ номер 78 алгебра 9 класс Макарычев, Миндюк
ГДЗ номер 977 математика 6 класс Дорофеев, Шарыгин
ГДЗ упражнение 122 алгебра 7 класс Бунимович, Кузнецова
ГДЗ вправа 776 алгебра 8 класс Бевз, Бевз
ГДЗ § 32 11 алгебра 9 класс Мерзляк, Поляков
ГДЗ часть 2 (номер) 19 русский язык 2 класс рабочая тетрадь Канакина
ГДЗ часть 2. страница 58 английский язык 6 класс Афанасьева, Михеева
ГДЗ unit 4 / homework 20 английский язык 7 класс Enjoy English Биболетова, Трубанева
ГДЗ номер 544 математика 5 класс Дорофеев, Шарыгин
ГДЗ unit 2 / listening 2 английский язык 10 класс forward Вербицкая, Маккинли
ГДЗ параграф 30 14 алгебра 7 класс рабочая тетрадь Миндюк, Шлыкова
ГДЗ упражнение 618 русский язык 4 класс Соловейчик, Кузьменко
ГДЗ страница 63 русский язык 3 класс тетрадь для контрольных работ Романова, Петленко
ГДЗ номер 507 математика 5 класс Дорофеев, Шарыгин
ГДЗ Алгебра Учебник 2020 7 Класс
ГДЗ По Математике 6 Класс Нешков
ГДЗ Английский 11 Михеева
ГДЗ По Английскому 8 Баранова Дули
ГДЗ По Русскому 5 Класс 625
занятий: 5 класс по математике
Щиток приборов
5 класс
Подпрограммы
Перейти к содержанию
Щиток приборов
Авторизоваться
Панель приборов
Календарь
Входящие
История
Помощь
Закрывать
-
Мой Dashboard
- Оценка 5
- Страницы
- Процедуры
NE
- Home
- Routines
- Closure
- Resource Bank
- Grade 4 Course
- Grade 5 AGL Course
- Grade 5 G / T
- Grade 5 Curriculum Community
- Grade 5 Family and Community
- Collaborations
- Google Привод
- HCPSS.мне
Математика / Цели обучения математике в пятом классе
Цели обучения математике в пятом классе
Числа и операции
Подсчет, наборы чисел, представления чисел, сравнение и порядок номеров, значение места
- Исследовать отрицательные числа в контексте.
- Поймите концепции ценности через миллионы.
- Посчитать по сотням тысяч и миллионам.
- Сравните и закажите целые числа до 10 000 000.
- Экспресс-номера до 10 000 000 в различных формах.
Целое число: умножение, деление
- Умножение многозначных чисел.
- Найдите частные, относящиеся к многозначным дивидендам.
- Решать задачи умножения и деления.
- Выберите наиболее полезную форму частного и интерпретируйте остаток.
Оценка и мысленная математика
- Используйте оценку и мысленную математику для оценки сумм, разностей, произведений и частных.
Десятичные понятия, операции и приложения
- Моделируйте десятичные дроби с использованием тысячных долей.
- Разберитесь в понятиях ценностей в тысячных долях.
- Перевести десятичные дроби в дроби.
- Сложить и вычесть десятичные знаки.
- Умножайте и делите десятичные дроби на целые числа.
- Решите задачи с умножением и делением десятичных знаков.
Соотношение, пропорция и процент
- Преобразование дробей в десятичные.
- Связать дроби и выражения деления.
- Сложение и вычитание различных дробей и смешанных чисел.
- Умножайте правильные дроби, неправильные дроби, смешанные числа и целые числа.
- Разделите дроби на целые числа.
- Решайте задачи со словами сложения, вычитания, умножения и деления дробей.
- Используйте коэффициенты для решения проблем.
- Найдите эквивалентные соотношения.
- Решите проблемы с процом.
- Перевести дроби в проценты.
- Найдите процент числа.
Алгебраическое мышление
Паттерны и свойства
- Выявление, описание и расширение числовых паттернов, включающих все операции.
- Найдите правила для завершения числовых шаблонов.
Алгебраические взаимосвязи и модели
- Поймите взаимосвязь между числами и символами в формулах для площади поверхности и объема.
- Опишите числовые отношения в контексте.
- Используйте буквы как переменные.
Числовые предложения, уравнения и неравенства
- Напишите и решите числовые предложения для одно-, двух- и трехэтапных реальных задач.
- Напишите и решите уравнения.
- Граф линейных уравнений.
- Упростите алгебраические выражения.
- Понять равенство и неравенство.
- Используйте порядок операций в числовых выражениях с двумя или более операциями.
Геометрия и измерение
Линии и углы
- Нанесите сумму углов на прямую линию.
- Накладываем сумму углов в точке.
- Применить свойство вертикальных углов пересекающихся линий.
Фигуры
- Примените свойства правого, равнобедренного и равностороннего треугольников.
- Примените сумму углов треугольника.
- Примените свойства параллелограмма, ромба и трапеции.
- Продемонстрируйте, что сумма длин любых двух сторон треугольника больше, чем длина третьей стороны.
- Определите и классифицируйте призмы и пирамиды.
- Определите твердое тело, которое можно сделать из сети.
- Обозначьте цилиндры, сферы и конусы.
- Опишите цилиндры, сферы и конусы по количеству и типу граней, а также количеству ребер и вершин.
- Построить твердые тела с помощью единичных кубов.
Длина, расстояние, периметр и площадь
- Найдите площадь треугольника как продолжение площади прямоугольника.
Площадь и объем поверхности
- Оцените и измерьте объем в кубических единицах.
- Используйте сетку прямоугольной призмы, чтобы найти ее площадь.
Сопоставление, симметрия, преобразования и координатная геометрия
- Нанесите точки на координатную сетку.
Анализ данных
Сбор, классификация, организация, представление, интерпретация и анализ данных
- Представьте данные в виде двойной гистограммы.
- Анализируйте данные в виде двойной гистограммы.
Вероятность
Исследование результатов и экспресс-вероятность
- Определите экспериментальную вероятность результата.
- Сравните результаты эксперимента с теоретической вероятностью.
- Найдите все возможные комбинации, составив список, составив древовидную диаграмму и умножив.
Иллюстративная математика 5 класс, Раздел 2 — Семья
В этом разделе учащиеся решают задачи, связанные с делением целых чисел с ответами на дроби (которые могут быть в форме смешанных чисел).Они развивают понимание дробей как деления числителя на знаменатель, то есть \ (a \ div b = \ frac {a} {b} \). Затем они решают задачи, связанные с умножением целого числа на дробное или смешанное число.
Раздел A: Дроби как частные
В этом разделе студенты узнают, что дроби являются частными и могут интерпретироваться как деление числителя на знаменатель. Учащиеся рисуют и анализируют ленточные диаграммы, представляющие ситуации обмена.В контексте первого обмена 1, затем более чем 1, а затем обмена некоторыми вещами со все большим количеством людей ученики замечают закономерности и начинают понимать, что в целом \ (\ frac {a} {b} = a \ div b \). Например, учащиеся используют диаграмму ниже, чтобы показать 4 объекта, которыми поровну пользуются 3 человека, или \ (4 \ div 3 \), который также можно записать в виде дроби, \ (\ frac {4} {3} \) .
Раздел Б. Доли целых чисел
В этом разделе студенты устанавливают связь между умножением и делением и используют визуальные представления, которые могут показать обе операции.Например, приведенная выше диаграмма также может представлять 4 группы \ (\ frac {1} {3} \) или \ (4 \ times \ frac {1} {3} \). Учащиеся открывают для себя понятные способы нахождения произведения дроби и целого числа и связывают этот продукт с контекстом и диаграммами. Они умножают целое число на дробь \ (\ frac {a} {b} \ times q \).
Сечение C: Площадь и дробные длины сторон
В этом разделе учащиеся используют то, что они знают о площади прямоугольников с целыми числами сторон, чтобы найти площадь прямоугольников, которые имеют одну целую длину стороны и одну дробную длину стороны.
Выражение \ (6 \ times 1 \) представляет площадь прямоугольника, равную 6 единиц на 1 единицу.
Таким же образом \ (6 \ times \ frac {2} {3} \) представляет площадь прямоугольника, равную 6 единиц на единицу \ (\ frac {2} {3} \).
Кроме того, учащиеся видят, что выражения \ (6 \ times \ frac {2} {3} \), \ (6 \ times2 \ times \ frac {1} {3} \) и \ (12 \ times \ frac {1} {3} \) могут все представлять область этой же диаграммы.
Учащиеся анализируют диаграммы, на которых длина одной стороны представляет собой смешанное число, например прямоугольник, равный 2 на \ (3 \ frac {2} {5} \).Они разлагают заштрихованную область, чтобы показать целые единицы и дробные единицы.
Чтобы найти область, представленную на этой диаграмме, учащиеся могут увидеть два прямоугольника: прямоугольник размером 2 единицы на 3 единицы и прямоугольник размером 2 единицы на единицу \ (\ frac {2} {5} \). Хотя они могут понять, что область может быть представлена как \ (2 \ times 3 \ frac {2} {5} \), студенты, которые видят разложенный прямоугольник, могут написать \ ((2 \ times 3) + (2 \ times \ frac {2} {5}) \), чтобы найти площадь.
Попробуйте дома!
В конце раздела задайте своему ученику следующие вопросы:
Напишите как можно больше выражений, представляющих эту диаграмму:
- Какова площадь следующего прямоугольника?
Вопросы, которые могут быть полезны в работе:
- Чем похожи две проблемы? Насколько они разные?
- Как ваше выражение представляет диаграмму?
- Как вы разбили прямоугольник, чтобы решить для всей области?
- Каковы длины сторон прямоугольника?
Общая математика: класс 5: геометрия
Координатная сетка
Нанесите точки на координатную сетку.
Постройте упорядоченные пары как точки (CCSS.Math.Content.5.G.A.1):
Другие примеры
Формы
Рассуждение о свойствах фигур.
Определите, принадлежит ли фигура заданной категории (CCSS.Math.Content.5.G.B.3):
Сравните свойства фигур (CCSS.Math.Content.5.G.B.4):
Другие примеры
Фракции, округление и анализ данных
В 5-м классе учащиеся начинают сочетать знакомые и новые математические навыки для решения задач.Happy Numbers включает в себя множество упражнений с взаимосвязью различных навыков, чтобы учащиеся учились свободно использовать свои знания. Вы также найдете задания, в которых они смогут выбрать следующий шаг в решении проблем, что укрепит их независимость в математике.
Учебная программа охватывает общие навыки работы с дробями и десятичными числами: сложение и сравнение дробей с разными знаменателями, решение словесных задач, долгое умножение и деление, нахождение дроби числа, извлечение целой части и дробной части путем деления в столбик, и многое другое.Учащиеся расширяют свои навыки округления (начатые в 3 классе) до десятичных дробей. Они открывают дроби как деление и уменьшение основной фракции. Это приводит к расширению их знаний с помощью деления на дроби и пониманию связи между делением на дробь и умножением на ее знаменатель. А пока у них много работы по числовой стоимости, в том числе и до тысячных.
Кроме того, студенты развивают навыки перевода словесных задач в математическую нотацию.Они переходят к более сложному составлению и анализу данных, включая выполнение задач с помощью линейных графиков, что является идеальной практикой для анализа данных. Кроме того, они знакомятся с концепцией экспоненты и развивают беглость речи с степенями 10.
Звучит тяжело? Вовсе нет, если есть учитель и хороший цифровой помощник! Изучите учебную программу 5-го класса «Счастливые числа» с помощью этого обзора, его конкретных примеров и педагогических примечаний. Использование нескольких представлений, манипуляций и интерактивных упражнений с возможностью выбора следующих шагов может сделать ваши уроки более интересными и эффективными!
Десятичные дроби
Введение тысячных долей
Happy Numbers представляет тысячные доли знакомой модели таблицы значений мест.Учащиеся могут перетаскивать диски по диаграмме и получать ощутимый опыт составления чисел. Кроме того, они дополняют шаблоны в словоформе, чтобы построить комплексное понимание этой новой концепции.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Сравнение десятичных знаков
Поскольку учащиеся освоили разряды десятичных дробей, теперь они могут их сравнивать. Happy Numbers поддерживает эти упражнения с таблицей значений.Здесь учащиеся не смогут перемещать диски, поэтому они могут сосредоточить свое внимание на сравнении каждой цифры.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы улучшить понимание и развить беглость речи, ученики расставляют десятичные дроби в соответствии с заданными условиями. Чтобы увидеть полное упражнение, перейдите по этой ссылке.
Округление десятичных знаков
Ученики начали изучать округление в 3 классе.В рамках учебной программы 5-го класса они расширяют свои знания и учатся округлять десятичные дроби до сотых, десятых, единиц и десятков. Они составляют правила округления с визуальной поддержкой числовой линии.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers предлагает увлекательные задания, помогающие учащимся развить беглость речи. Определите правильное направление закругления и сделайте корзину!
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Также студенты качественно отрабатывают навык. Здесь они шаг за шагом округляют заданное число, чтобы узнать, что шаблон работает для любой цифры.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Эта стратегия округления может быть не такой уж очевидной. Используя сравнение, учащиеся сначала определяют способ округления числа, а затем приступают к решению.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Оценка — важная тема для реальных ситуаций. Даже при покупке продуктов удобно оценивать приблизительный результат, не выполняя прямых математических операций. Предлагая текстовые подсказки, Happy Numbers помогает учащимся усвоить концепцию.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Сложение и вычитание десятичных чисел
Работа с десятичными знаками основана на понимании разряда, поэтому Happy Numbers продолжает поддерживать свое стремление с помощью диаграммы разряда.В то же время учащиеся используют сложение и вычитание столбцов для плавного перехода на более абстрактный уровень.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Позже программное обеспечение сокращает строительные леса, чтобы проверить, могут ли учащиеся решить задачу с использованием абстрактного подхода. Чтобы сделать этот переход более комфортным, Happy Numbers включает ненавязчивые подсказки. Студенты могут следовать им, чтобы помочь освоить процедуру.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Умножение десятичных знаков
Умножение десятичных знаков не составит труда, если ученик уже освоил шаблон для целых чисел. Happy Numbers дает им визуальную поддержку, предоставляет текстовые подсказки и использует уравнения с простыми числами, чтобы начать понимание процесса с самого простого уровня.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Студенты изучают методы решения более сложных математических задач.Практика преобразования десятичных дробей в целые числа с последующим обратным преобразованием продукта помогает им понять важность правильного размещения десятичной точки.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Концептуальное понимание математики основано на свободном использовании методов, которые помогают оптимизировать процесс. Один из методов, предлагаемых Happy Numbers, — это упрощение умножения двухзначного десятичного числа на двузначное целое число с помощью частичных произведений.Подход визуально представлен в виде модели местности.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Затем учащиеся переходят к умножению без пошаговых инструкций. Они также применяют свои знания о размещении десятичной точки.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
В Модуле 4 студенты учатся умножать десятичные дроби. Они начинают с умножения на 0.1 и 0,01 с использованием Таблицы стоимости мест…
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
… и быстро перейти к более абстрактному умножению столбцов с различными десятичными знаками.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Десятичные дроби
Разделение десятичных знаков традиционно начинается с поддержки Place Value Chart. Happy Numbers предлагает учащимся управлять решением, отвечая на пошаговые вопросы.Последовательное руководство помогает каждому ученику плавно проходить через зону ближайшего развития.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Посмотрите, как Happy Numbers ведет их через десятичное деление, представленное в виде длинного деления. Каждый шаг озаглавлен над страницей, и числами можно манипулировать, когда это необходимо.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Десятичные знаки могут появиться в частном, даже если их не было в уравнении.Кроме того, здесь учащиеся используют свои навыки округления, чтобы сначала оценить частное и проверить его.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers моделирует ситуации, в которых предварительное частное может быть завышено или занижено. Учащиеся применяют свою версию частного и при необходимости изменяют ее.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Когда навык усвоен, учащиеся могут выбрать, нужно ли им оценить частное, или они готовы его заполнить.Возможность выбрать следующий шаг вселяет уверенность в манипулировании математическими операциями.
, кратное 10
Happy Numbers показывает, как числа, кратные 10, работают с десятичными знаками, на конкретных примерах. Затем учащимся нужно заполнить пробелы в правиле. Таким образом, учащиеся учатся самостоятельно делать выводы на основе конкретных ситуаций и преобразовывать их в шаблоны для использования в аналогичных случаях.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Отличие десяти от числа, кратного десяти, упрощает процесс решения, поэтому учащиеся учатся применять этот метод, следуя инструкциям «Счастливые числа».
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Переименование десятичных чисел в форме единиц
Этот навык полезен для лучшего понимания числового значения и развития устных математических навыков. Студенты практикуют переименование обеих сторон и развивают с ним беглость.
Чтобы просмотреть упражнения полностью, перейдите по этой и этой ссылкам.
Понятие экспоненты
Понятие экспоненты вводится путем многократного умножения. Студенты анализируют заданные выражения и заполняют таблицу. Затем Дино помогает им подвести итоги и составить правила.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Затем
Happy Numbers дает им упражнение для закрепления навыков.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Степень из 10
В 5 классе учащиеся знакомятся со степенью 10. Его применение полезно для упрощения сложных выражений, быстрой оценки продукта или применения умственных стратегий. Кроме того, студенты практикуют разложение и перестановку множителей в соответствии со свойствами умножения.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Учащиеся изучают мультипликативные паттерны, связанные со степенью 10, с визуальной поддержкой таблицы значений. Если ошибок нет, Happy Numbers сокращает строительные леса, чтобы усилить развитие навыков.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Более того, они обнаруживают схему сложения нуля при умножении на 10, его степени или кратные.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Для выражений с десятичными знаками Happy Numbers предоставляет специальные задания, в которых учащиеся практикуют расстановку десятичных знаков.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Упражнения, включающие взаимосвязь различных навыков, помогают учащимся понять логику применения различных математических навыков и сформировать концептуальное понимание.Посмотрите на эту задачу, где они применяют знания об ассоциативном свойстве наряду с практикой факторинга и степеней 10.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Многозначные целые числа
Составление выражения
Говорящая математика действительно важна, так как это часть сложного понимания. Как ученику развить математическое мышление без словесных навыков?
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Стратегии округления и оценки
Счастливые числа показывает, как определение произведения путем округления может облегчить умножение умножения. Сценарии из реальной жизни помогают вовлечь учащихся в решение данной проблемы. Они строят уравнения в соответствии с проблемой слов и оценивают продукт.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Кроме того, они развивают беглость речи с округлением целых чисел.Студентам необходимо округлить число до ближайших десяти, сотен или тысяч в случайном порядке. Пояснение над числом подсказывает следующий шаг.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Сложность задач растет! Теперь студенты практикуют округление до ближайшего кратного случайного числа. Happy Numbers предоставляет им пошаговые инструкции.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
В этом задании учащиеся объединяют свои знания о округлении, сокращении, переименовании и оценке! Комплексное применение различных математических навыков укрепляет концептуальное понимание учащихся, развивает беглость речи и формирует математическое мышление.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Психологические стратегии умножения и деления
Учащиеся развивают свои умственные математические навыки, применяя знания о свойствах умножения, разложении на множители и степени десяти.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers заставляет их повторять знакомые шаблоны и соединять их с новыми навыками. Различные комбинации математических фактов и их применение учат студентов бегло выполнять операции.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Постепенно студенты начинают мысленно решать уравнения. При этом у них всегда есть возможность получить поддержку.Здесь они могут ссылаться на умножение столбцов, если это необходимо.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Студенты применяют те же самые разнообразные навыки для разработки умственных стратегий деления.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Стандартный алгоритм умножения и деления
Happy Numbers расширяет применение стандартного алгоритма умножения и деления многозначных чисел.Учащиеся развивают способность перегруппироваться и работать с нулями. Они начинают с составления выражений в соответствии со словами.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы улучшить их концептуальное понимание, стандартный алгоритм представлен наряду с другими стратегиями, такими как модель площади и разложение степеней 10.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Студенты расширяют свои навыки умножения 3- и 4-значных чисел.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Деление с частичными частями
Учащиеся познакомились с частными частными и концепцией остатка в 4 классе. Они проверяют эти навыки, используя простые уравнения с осязаемыми каркасами реальных объектов.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Затем «Счастливые числа» сокращают строительные леса, но побуждают учащихся выполнять правило.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Студенты получают все более сложные задания. Они решают уравнения с большими числами путем деления в столбик с использованием факторной оценки.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Затем Happy Numbers предлагает им возможность самостоятельно разработать стратегию решения.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Наконец, ученики решают деление с трехзначным частным, где частное может быть завышено или занижено.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Фракции
Эквивалентные дроби
Студенты знакомятся с основами дробного эквивалента. Они учатся умножать, чтобы найти эквивалентную дробь, и делить, чтобы уменьшить дробь.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers также представляет концепции общих факторов и наибольшего общего фактора. Это будет полезно для уменьшения фракции.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Сложение и вычитание
Учащиеся изучают материалы по операциям с дробями и смешанными числами, предусмотренные в учебной программе 4-го класса.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
В этом году они расширяют свои навыки сложения и вычитания дробей, научившись делать это с разными знаменателями.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers помогает учащимся найти решение с помощью списка шагов, которые они могут выполнить. Это учит студентов логическому порядку действий, в то же время испытывая их применение.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers увеличивает сложность уравнений сложения и вычитания за счет использования смешанных чисел. Учащиеся укрепляют свое понимание эквивалентности чисел, когда они переименовывают числа для решения задач.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы развить комплексное понимание операций с дробями, Happy Numbers добавляет визуальные представления.Здесь студенты учатся оценивать результат сложения или вычитания и сравнивать его с контрольными показателями с помощью модели. Это полезный навык для самопроверки перед фактическим решением проблемы.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Дроби как деление
Кто не любит сладкое в пятом классе? Моделирование математической операции на примере из реальной жизни помогает учащимся лучше понять и понять ее значение.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Кажется, математика может быть самым аппетитным предметом школьной программы! Раздавая лепешки, учащиеся учатся сообщать остаток и получают смешанные числа в качестве ответа.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers предлагает применить деление по столбцу, когда частное и остаток не рассчитаны в уме.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Целые числа и дроби, состоящие из нескольких цифр
Одна из целей учебного пособия Happy Numbers — сформировать концептуальное понимание любых математических операций, которые изучают учащиеся. Выявляя закономерности при умножении на дроби, меньшие, равные и большие 1, программа закладывает основу для самопроверки и построения чувства числа.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Прежде всего, ученики учатся определять доли целого числа. Happy Numbers создает увлекательные словесные задачи, которые наверняка мотивируют студентов выполнить задание.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Затем вместе с учениками Дино составляйте правило для правильного решения умножения.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Оптимизация задач — один из многих важных навыков, которым учит математика.Happy Numbers предлагает студентам возможность сократить дробное уравнение, прежде чем найти ответ.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Измерение фракции
Кроме того, Happy Numbers учит студентов конвертировать единицы измерения и определять используемые дроби. Программа снабжает их глоссарием со всеми единицами измерения.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Умножение дроби на дробь
Умножение на дроби будет легче освоить, если ученики начнут с формулы прямо перед ними. Учащиеся повторяют его несколько раз, прежде чем решить уравнение, чтобы запомнить его и применить.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Умножение дроби на дробь также может понадобиться для решения задач, основанных на реальных сценариях.Здесь Happy Numbers объединяет умножение дробей с моделью площади и задачами со словами.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Умножение с дробями и десятичными знаками
Студенты практикуют преобразование десятичных дробей в дроби, чтобы упростить умножение их на целое число.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Чтобы подтолкнуть учащихся к концептуальному пониманию, Happy Numbers представляет процесс визуально с помощью Таблицы Местных Ценностей.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Кроме того, учащиеся учатся выполнять обратную операцию и преобразовывать дроби в десятичную форму, находя степень 10 и используя в качестве альтернативы деление в столбик.
Чтобы просмотреть упражнения полностью, перейдите по этой и этой ссылкам.
Они определяют результат умножения на дробь или десятичную дробь в зависимости от его отношения к единице.Наряду с решением конкретных сравнений учащиеся строят формулы для таких математических ситуаций.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Деление на дроби
В последней теме 5-го класса «Счастливые числа» вводится разделение дробей на целые числа и дроби на дроби. Во-первых, учащиеся связывают деление на единичную дробь с умножением на знаменатель. Визуальное представление ленточной диаграммы помогает понять смысл этого отношения.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Помогая Дино развивать свои кулинарные таланты, ученики знакомятся с делением целого числа на единичную дробь. Happy Numbers показывает, что школьная математика может распространяться на реальные жизненные ситуации, что делает обучение гораздо более увлекательным.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
С помощью ленточных диаграмм, моделей площадей и моделирования учащиеся изучают и разрабатывают различные способы деления на дроби.
Линейные графики измерения фракций
Happy Numbers укрепляет навыки анализа учащихся за счет представления линейных графиков. Здесь они сочетают знания об измерениях, округлении и смешанных числах.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Экспертное руководство помогает студентам легко освоить новый способ решения проблем. Дружелюбный Дино идет по их пути и при необходимости делится советами.
Выражения с дробями и задачи со словами
Happy Numbers предлагает в учебную программу увлекательные задачи со словами, основанные на реальных сценариях.Решая такие задачи, учащиеся оттачивают свой анализ текста и укрепляют навыки составления конкретных математических выражений.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Happy Numbers предлагает многоэтапные задания, чтобы учащиеся могли всесторонне применить свои недавно приобретенные навыки.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
При изучении дробей как деления учащиеся решают задачи со словами.Задача поддерживается лентами ленточных диаграмм. Космическое путешествие? Всегда интересно!
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Также студенты практикуются в составлении сложных выражений на основе текста.
Чтобы увидеть упражнение полностью, перейдите по этой ссылке.
Вдохни и буги-вуги
У
учащихся будет насыщенный учебный год.Happy Numbers приложила все усилия, чтобы облегчить процесс обучения с помощью визуальных представлений, реальных сценариев, моделирования и групповых задач, чтобы плавно переходить учащихся от конкретных представлений к абстрактным. Упражнения сопровождаются дополнительным озвучиванием в реальном времени для каждого шага, а также всей учебной программы, доступной на испанском языке. Наша цифровая помощь адаптирована для разных классов со студентами с разным уровнем математики. Тест на определение уровня в начале года определит каждого учащегося в учебную программу в соответствии с зоной ближайшего развития.Индивидуальный план для каждого ученика позволяет овладеть всеми необходимыми навыками для успешного перехода в следующий класс. Начните пробную версию прямо сейчас, подписавшись на Happy Numbers здесь.
Как можно дополнить инструкции счастливыми числами?
Принести счастливые числа в класс невероятно легко, и вы можете сделать это в любой момент учебного года. Зарегистрируйтесь сейчас или посмотрите минутное видео, которое проведет вас через настройку:
Если у вас возникнут дополнительные вопросы, наша служба поддержки всегда готова помочь вам.Щелкните синий значок программы обмена сообщениями в правом нижнем углу этой страницы, чтобы начать с ними разговор.
i-Ready Classroom Mathematics (2020) — Отчет за пятый класс
Рейтинги соответствия и удобства использования присваиваются в зависимости от того, как материалы оцениваются по ряду критериев и
индикаторы с рецензентами, предоставляющими подтверждающие доказательства для определения и обоснования каждого присужденного балла.
Для
ELA и математика, рейтинги совмещения представляют собой степень соответствия материалов ожиданиям, частичного соответствия
ожиданиям или не соответствуют ожиданиям в отношении соответствия стандартам подготовки к колледжу и карьере, включая все
стандарты присутствуют и рассматриваются с должной глубиной, чтобы помочь студентам в освоении навыков и
знания, которые им необходимы, чтобы быть готовыми к поступлению в колледж и карьере.
Для науки рейтинги соответствия представляют собой степень соответствия материалов ожиданиям, частичного соответствия
ожиданиям или не соответствуют ожиданиям в отношении соответствия научным стандартам следующего поколения, включая все
стандарты присутствуют и рассматриваются с должной глубиной, чтобы помочь студентам в освоении навыков и
знания, которые им необходимы, чтобы быть готовыми к поступлению в колледж и карьере.
Для всех областей контента рейтинги юзабилити представляют собой степень соответствия материалов ожиданиям, частичного соответствия
ожиданиям или не соответствуют ожиданиям в отношении эффективных практик (как указано в инструменте оценки) для использования и
дизайн, планирование и обучение учителей, оценка, дифференцированное обучение и эффективное использование технологий.
Математика К-8
Фокус и согласованность — 14 возможных точек
12–14 баллов: соответствует ожиданиям
8-11 баллов: частично соответствует ожиданиям
Ниже 8 баллов: не оправдывает ожиданий
Строгость и математическая практика — 18 возможных баллов
16-18 баллов: соответствует ожиданиям
11-15 баллов: частично соответствует ожиданиям
Ниже 11 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 38 возможных баллов
31–38 баллов: соответствует ожиданиям
23–30 баллов: частично соответствует ожиданиям
Ниже 23: не оправдывает ожиданий
Математическая старшая школа
F ocus и Coherence — 18 возможных точек
14–18 баллов: соответствует ожиданиям
10-13 баллов: частично соответствует ожиданиям
Ниже 10 баллов: не оправдывает ожиданий
Строгость и математическая практика — 16 возможных баллов
14–16 баллов: оправдывает ожидания
10-13 баллов: частично соответствует ожиданиям
Ниже 10 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 36 возможных баллов
30–36 баллов: соответствует ожиданиям
22–29 баллов: частично соответствует ожиданиям
Ниже 22: не оправдывает ожиданий
ЭЛА К-2
Сложность и качество текста — 58 возможных баллов
52-58 баллов: соответствует ожиданиям
28-51 баллов: частично соответствует ожиданиям
Ниже 28 баллов: не оправдывает ожиданий
Формирование знаний с помощью текстов, словарного запаса и задач — 32 возможных балла
28-32 балла: оправдать ожидания
16–27 баллов: частично соответствует ожиданиям
Ниже 16 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 34 возможных балла
30-34 балла: соответствует ожиданиям
24–29 баллов: частично соответствует ожиданиям
Ниже 24 баллов: не оправдывает ожиданий
ELA 3-5
Сложность и качество текста — 42 возможных балла
37-42 балла: соответствует ожиданиям
21–36 баллов: частично соответствует ожиданиям
Ниже 21 балла: не оправдывает ожиданий
Формирование знаний с помощью текстов, словарного запаса и задач — 32 возможных балла
28-32 балла: оправдать ожидания
16–27 баллов: частично соответствует ожиданиям
Ниже 16 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 34 возможных балла
30-34 балла: соответствует ожиданиям
24–29 баллов: частично соответствует ожиданиям
Ниже 24 баллов: не оправдывает ожиданий
ELA 6-8
Сложность и качество текста — 36 возможных баллов
32–36 баллов: соответствует ожиданиям
18–31 балл: частично соответствует ожиданиям
Ниже 18 баллов: не оправдывает ожиданий
Формирование знаний с помощью текстов, словарного запаса и задач — 32 возможных балла
28-32 балла: оправдать ожидания
16–27 баллов: частично соответствует ожиданиям
Ниже 16 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 34 возможных балла
30-34 балла: соответствует ожиданиям
24–29 баллов: частично соответствует ожиданиям
Ниже 24 баллов: не оправдывает ожиданий
Средняя школа ELA
Сложность и качество текста — 32 возможных балла
28-32 балла: соответствует ожиданиям
16–27 баллов: частично соответствует ожиданиям
Ниже 16 баллов: не оправдывает ожиданий
Формирование знаний с помощью текстов, словарного запаса и задач — 32 возможных балла
28-32 балла: оправдать ожидания
16–27 баллов: частично соответствует ожиданиям
Ниже 16 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 34 возможных балла
30-34 балла: соответствует ожиданиям
24–29 баллов: частично соответствует ожиданиям
Ниже 24 баллов: не оправдывает ожиданий
Средняя школа естественных наук
Предназначен для NGSS — 26 возможных точек
22-26 баллов: оправдывает ожидания
13–21 балл: частично соответствует ожиданиям
Ниже 13 баллов: не оправдывает ожиданий
Согласованность и масштаб — 56 возможных точек
48-56 баллов: соответствует ожиданиям
30–47 баллов: частично соответствует ожиданиям
Ниже 30 баллов: не оправдывает ожиданий
Обучающая поддержка и удобство использования — 54 возможных балла
46-54 балла: соответствует ожиданиям
29–45 баллов: частично соответствует ожиданиям
Ниже 29 баллов: не оправдывает ожиданий
5.NF.B.3 | Интерпретируйте дробь как деление числителя на знаменатель (a / b = a ÷ b). Решайте словесные задачи, связанные с делением целых чисел, что приводит к ответам в форме дробей или смешанных чисел, например, используя визуальные модели дробей или уравнения для представления проблемы. Например, интерпретируйте 3/4 как результат деления 3 на 4, отметив, что 3/4, умноженное на 4, равняется 3, и что когда 3 целых делятся поровну между 4 людьми, каждый человек имеет долю размера 3/4.Если 9 человек захотят разделить 50-фунтовый мешок риса поровну по весу, сколько фунтов риса должен получить каждый человек? Между какими двумя целыми числами лежит ваш ответ? | 5.NF.B.4 | Применяйте и расширяйте предыдущие представления об умножении, чтобы умножать дробь или целое число на дробь. 5.NF.B.4.A | 5.NF.B.7 | Применяйте и расширяйте предыдущие представления о делении, чтобы делить единичные дроби на целые числа и целые числа на единичные дроби. |