Основные сведения о рациональных выражениях и их преобразованиях
На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.
Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями
Урок: Основные сведения о рациональных выражениях и их преобразованиях
Определение
Рациональное выражение – это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.
Рассмотрим пример рационального выражения:
.
Частные случаи рациональных выражений:
1. степень: ;
2. одночлен: ;
3. дробь: .
Преобразование рационального выражения – это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).
Рассмотрим несколько примеров на преобразование рациональных выражений.
Пример 1
Решение:
Решим данный пример по действиям. Первым выполняется действие в скобках.
Ответ:
Пример 2
Решение:
Ответ:
Пример 3
Решение:
Ответ: .
Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.
.
Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.
На данном уроке мы рассмотрели рациональные выражения и их преобразования, а также несколько конкретных примеров данных преобразований.
Список литературы
1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Портал Естественных Наук (Источник).
2. Фестиваль педагогических идей «Открытый урок» (Источник).
3. Интернет портал xenoid.ru (Источник).
Домашнее задание
1. №№91-95. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
2. Выполнить действия: а), б) .
3. Выполнить действия: а) , б) .
4. Упростить выражение: .
interneturok.ru
8 класс. Алгебра. Алгебраические дроби. — Сложение и вычитание алгебраических дробей.
Комментарии преподавателя
В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему – сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров
Сформулируем правило сложения (вычитания) алгебраических дробей с одинаковыми знаменателями (оно совпадает с аналогичным правилом для обыкновенных дробей): То есть для сложения или вычитания алгебраических дробей с одинаковыми знаменателями необходимо составить соответствующую алгебраическую сумму числителей, а знаменатель оставить без изменений.
Это правило мы разберём и на примере обыкновенных дробей, и на примере алгебраических дробей.
Пример 1. Сложить дроби: .
Решение
Сложим числители дробей, а знаменатель оставим таким же. После этого разложим числитель и знаменатель на простые множители и сократим. Получим: .
Примечание: стандартная ошибка, которую допускают при решении подобного рода примеров, заключается в следующем способе решения: . Это грубейшая ошибка, поскольку знаменатель остаётся таким же, каким был в исходных дробях.
Ответ: .
Пример 2. Сложить дроби: .
Решение
Данная задача ничем не отличается от предыдущей: .
Ответ: .
От обыкновенных дробей перейдём к алгебраическим.
При
www.kursoteka.ru
помогите решить пример по алгебре за 8 класс ооочень нужно!!!!
Так 2*кор из2 +5*кор из2 — 7*кор из2=0
решение
2√2+√50-√98=2√2+√(25*2)-√(49*2)=2√2+5√2-7√2=7√2-7√2=0
-10корень 100 +6 корень 847 +2,9 корень 25 -11корень 252
√(440-273-20,4)²+√(300-204,8-13,92)²
touch.otvet.mail.ru