8 класс

Как решить пример по алгебре 8 класс – 8 класс. Алгебра

Содержание

Основные сведения о рациональных выражениях и их преобразованиях

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование. 

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение – это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

.

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения – это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2      

Решение:      

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования, а также несколько конкретных примеров данных преобразований.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Портал Естественных Наук (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Интернет портал xenoid.ru (Источник).

 

Домашнее задание

1. №№91-95. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Выполнить действия: а), б) .

3. Выполнить действия: а) , б) .

4.  Упростить выражение: .

interneturok.ru

8 класс. Алгебра. Алгебраические дроби. — Сложение и вычитание алгебраических дробей.

Комментарии преподавателя

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему – сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

 

Сфор­му­ли­ру­ем пра­ви­ло сло­же­ния (вы­чи­та­ния) ал­геб­ра­и­че­ских дро­бей с оди­на­ко­вы­ми зна­ме­на­те­ля­ми (оно сов­па­да­ет с ана­ло­гич­ным пра­ви­лом для обык­но­вен­ных дро­бей):  То есть для сло­же­ния или вы­чи­та­ния ал­геб­ра­и­че­ских дро­бей с оди­на­ко­вы­ми зна­ме­на­те­ля­ми необ­хо­ди­мо со­ста­вить со­от­вет­ству­ю­щую ал­геб­ра­и­че­скую сумму чис­ли­те­лей, а зна­ме­на­тель оста­вить без из­ме­не­ний.

Это пра­ви­ло мы раз­бе­рём и на при­ме­ре обык­но­вен­ных дро­бей, и на при­ме­ре ал­геб­ра­и­че­ских дро­бей.

При­мер 1. Сло­жить дроби: .

Ре­ше­ние

Сло­жим чис­ли­те­ли дро­бей, а зна­ме­на­тель оста­вим таким же. После этого раз­ло­жим чис­ли­тель и зна­ме­на­тель на про­стые мно­жи­те­ли и со­кра­тим. По­лу­чим: .

При­ме­ча­ние: стан­дарт­ная ошиб­ка, ко­то­рую до­пус­ка­ют при ре­ше­нии по­доб­но­го рода при­ме­ров, за­клю­ча­ет­ся в сле­ду­ю­щем спо­со­бе ре­ше­ния: . Это гру­бей­шая ошиб­ка, по­сколь­ку зна­ме­на­тель оста­ёт­ся таким же, каким был в ис­ход­ных дро­бях.

Ответ: .

При­мер 2. Сло­жить дроби: .

Ре­ше­ние

Дан­ная за­да­ча ничем не от­ли­ча­ет­ся от преды­ду­щей: .

Ответ: .

От обык­но­вен­ных дро­бей пе­рей­дём к ал­геб­ра­и­че­ским.

При­

www.kursoteka.ru

помогите решить пример по алгебре за 8 класс ооочень нужно!!!!

Так 2*кор из2 +5*кор из2 — 7*кор из2=0

решение
2√2+√50-√98=2√2+√(25*2)-√(49*2)=2√2+5√2-7√2=7√2-7√2=0

-10корень 100 +6 корень 847 +2,9 корень 25 -11корень 252

√(440-273-20,4)²+√(300-204,8-13,92)²

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *