8 класс

8 класс алгебра формула – Определения и формулы алгебра 8 класс

Содержание

Алгебра 8 класс: все темы, правила и формулы

Алгебра 8 класс: все темы, правила и формулы.
Краткий курс алгебры за 8 класс.

«Алгебра 8 класс: все темы, правила и формулы» — это краткое повторение алгебры за 8 класс (основные понятия, формулы и определения). Вся информация, самое главное и всё, что нужно знать вкратце. Цитаты взяты из учебника для общеобразовательных учреждений (авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова под ред. С.А. Теляковского) — М.: Просвещение, 2017.

Выражения и их преобразования


Уравнения

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы уравнений, не имеющие решений, также считают равносильными.

Для решения систем уравнений с двумя переменными используются графический способ, способ подстановки, способ сложения.

При графическом способе строят графики линейных уравнений (прямые) и анализируют их расположение:

  • если прямые совпадают, то система имеет бесконечно много решений, причём координаты любой точки прямой являются решением системы;
  • если прямые параллельны, то система не имеет решений; если прямые пересекаются, то система имеет единственное решение, причём координаты точки пересечения прямых являются решением системы.

При решении системы двух линейных уравнений с двумя переменными способом подстановки поступают следующим образом:

  • выражают из какого-либо уравнения системы одну переменную через другую;
  • подставляют в другое уравнение системы вместо этой переменной полученное выражение;
  • решают получившееся уравнение с одной переменной; подставляют значение найденной переменной в одно из уравнений и находят соответствующее значение другой переменной.

При решении системы двух линейных уравнений с двумя переменными способом сложения поступают следующим образом:

  • умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали в уравнениях противоположными числами;
  • складывают почленно левые и правые части уравнений системы;
  • решают получившееся уравнение с одной переменной; подставляют значение найденной переменной в одно из уравнений и находят соответствующее значение другой переменной.

 


Неравенства


Функции


Действительные числа. Приближённые вычисления


Элементы статистики

 


Вы смотрели «Алгебра 8 класс: все темы, правила и формулы» — это краткое повторение алгебры за 8 класс (основные понятия, формулы и определения). Краткий курс алгебры в 8 классе: вся информация, самое главное и всё, что нужно знать вкратце.

Алгебра 8 класс: все темы, правила и формулы

5 (100%) 2 vote[s]

uchitel.pro

Формулы корней квадратного уравнения. Алгебра, 8 класс: уроки, тесты, задания.












1.

Дискриминант квадратного уравнения


Сложность:
лёгкое

1


2.

Число корней квадратного уравнения


Сложность:
лёгкое

1


3.

Полное квадратное уравнение (a = 1; b > 0)


Сложность:
лёгкое

2


4.

Полное квадратное уравнение (а не равно 1)


Сложность:
среднее

2


5.

Квадратное уравнение, введение новой переменной


Сложность:
среднее

3


6.

Квадратное уравнение, равенство произведения 0


Сложность:
среднее

1


7.

Задача на составление квадратного уравнения


Сложность:
сложное

4


8.

Сокращение алгебраической дроби, разложение на множители квадратного трёхчлена


Сложность:
сложное

4


9.

Сокращение алгебраической дроби, формула разности кубов


Сложность:
сложное

4


10.

Разложение на множители квадратного трёхчлена, отрицательные корни


Сложность:
сложное

2

www.yaklass.ru

Все главные формулы по математике — Математика — Теория, тесты, формулы и задачи

Оглавление:

 

Формулы сокращенного умножения

К оглавлению…

Квадрат суммы:

Квадрат разности:

Разность квадратов:

Разность кубов:

Сумма кубов:

Куб суммы:

Куб разности:

Последние две формулы также часто удобно использовать в виде:

 

Квадратное уравнение и формула разложения квадратного трехчлена на множители

К оглавлению…

Пусть квадратное уравнение имеет вид:

Тогда дискриминант находят по формуле:

Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:

Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:

Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:

Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:

Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:

Произведение корней квадратного уравнения может быть вычислено по формуле:

Парабола

График параболы задается квадратичной функцией:

При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:

Игрек вершины параболы:

 

Свойства степеней и корней

К оглавлению…

Основные свойства степеней:

Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень.

Основные свойства математических корней:

Для арифметических корней:

Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство:

Для корня четной степени имеется следующее свойство:

 

Формулы с логарифмами

К оглавлению…

Определение логарифма:

Определение логарифма можно записать и другим способом:

Свойства логарифмов:

Логарифм произведения:

Логарифм дроби:

Вынесение степени за знак логарифма:

Другие полезные свойства логарифмов:

 

Арифметическая прогрессия

К оглавлению…

Формулы n-го члена арифметической прогрессии:

Соотношение между тремя соседними членами арифметической прогрессии:

Формула суммы арифметической прогрессии:

Свойство арифметической прогрессии:

 

Геометрическая прогрессия

К оглавлению…

Формулы n-го члена геометрической прогрессии:

Соотношение между тремя соседними членами геометрической прогрессии:

Формула суммы геометрической прогрессии:

Формула суммы бесконечно убывающей геометрической прогрессии:

Свойство геометрической прогрессии:

 

Тригонометрия

К оглавлению…

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Формулы двойного угла

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Тригонометрические формулы преобразования произведения в сумму

Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формулы половинного угла

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

 

Тригонометрические формулы приведения

Формулы приведения задаются в виде таблицы:

 

Тригонометрическая окружность

По тригонометрической окружности легко определять табличные значения тригонометрических функций:

 

Тригонометрические уравнения

К оглавлению…

Формулы решений простейших тригонометрических уравнений. Для синуса существует две равнозначные формы записи решения:

Для остальных тригонометрических функций запись однозначна. Для косинуса:

Для тангенса:

Для котангенса:

Решение тригонометрических уравнений в некоторых частных случаях:

 

Геометрия на плоскости (планиметрия)

К оглавлению…

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы:

Свойство биссектрисы:

Формулы биссектрисы:

Основное свойство высот треугольника:

Формула высоты:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Свойство касательных:

Свойство хорды:

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

 

Геометрия в пространстве (стереометрия)

К оглавлению…

Главная диагональ куба:

Объем куба:

Объём прямоугольного параллелепипеда:

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Объём призмы:

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Объём кругового цилиндра:

Площадь боковой поверхности прямого кругового цилиндра:

Объём пирамиды:

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Объем кругового конуса:

Площадь боковой поверхности прямого кругового конуса:

Длина образующей прямого кругового конуса:

Объём шара:

Площадь поверхности шара (или, другими словами, площадь сферы):

 

Координаты

К оглавлению…

Длина отрезка на координатной оси:

Длина отрезка на координатной плоскости:

Длина отрезка в трёхмерной системе координат:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы):

 

Таблица умножения

К оглавлению…

 

Таблица квадратов двухзначных чисел

К оглавлению…

 

Расширенная PDF версия документа «Все главные формулы по школьной математике»:

К оглавлению…

educon.by

Краткий курс алгебры 8 класс.

8 класс алгебра Рациональные дроби и их свойства.

  1. Целые и дробные выражения называют рациональными выражениями.

  2. Значения переменных при которых выражение имеет смысл , называют допустимыми значениями переменных.

  3. Дробь , числитель и знаменатель которой многочлены , называют рациональной дробью.

  4. Основное свойство рациональной дроби: если числитель и знаменатель рациональной дроби умножить на один и тот же ненулевой многочлен , то получится равная ей дробь.

  5. Тождеством называется равенство , верное при всех допустимых значениях входящих в него переменных.

  6. Если изменить знак числителя ( или знак знаменателя ) дроби и знак перед дробью , то получим выражение , тождественно равное данному.

Сумма и разность дробей.

  1. Чтобы сложить рациональные дроби с одинаковыми знаменателями , надо сложить их числители , а знаменатель оставить тем же.

  2. Чтобы выполнить вычитание рациональных дробей с одинаковыми знаменателями , надо из числителя первой дроби вычесть числитель второй дроби , а знаменатель оставить тем же.

  3. Сложение и вычитание рациональных дробей с разными знаменателями сводится к сложению и вычитанию рациональных дробей с одинаковыми знаменателями .Для этого дроби приводят к общему знаменателю.

Произведение и частное дробей.

  1. Чтобы умножить дробь на дробь , нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем , а второе – знаменателем дроби.

  2. Чтобы возвести дробь в степень , надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе , а второй – в знаменателе дроби.

  3. Чтобы разделить одну дробь на другую , нужно первую дробь умножить на дробь , обратную второй.

Функция у= и её график.

  1. Обратной пропорциональностью называется функция , которую можно задавать формулой у= , где х – незави симая переменная и k – не равное нулю число.

  2. Областью определения функции у= является множество всех чисел , отличных от нуля.

  3. Кривую , являющуюся графиком обратной пропорциональности , называют гиперболой. Гипербола состоит из двух ветвей.

Действительные числа.

  1. Всякое рациональное число , как целое , так и дробное , можно представить в виде дроби , где m- целое число , а n – натуральное. Одно и то же рациональное число
    можно представить в таком виде разными способами.

  2. Среди дробей , с помощью которых записывается данное рациональное число , всегда можно указать дробь с наименьшим знаменателем. Эта дробь несократима. Для целых чисел такая дробь имеет знаменатель , равный 1.

  3. Каждое рациональное число может быть представлено в виде бесконечной десятичной периодической дроби.

  4. Каждая бесконечная десятичная периодическая дробь представляет некоторое рациональное число.

  5. Среди рациональных чисел нет такого числа , квадрат которого равен 2.

  6. Если к положительным бесконечным десятичным дробям присоединить противоположные им им числа и число нуль , то получим множество чисел , которые называют действительными числами.

  7. Множество действительных чисел состоит из рациональных и иррациональных чисел.

Арифметический квадратный корень.

  1. Квадратным корнем из числа а называют число , квадрат которого равен а.

  2. Арифметическим квадратным корнем из числа а называется неотрицательное число , квадрат которого равен а.

  3. = b , если выполняются два условия : 1) b ≥ 0 ; 2) = а.

  4. При а ‹ 0 выражение не имеет смысла.

  5. При любом а , при котором выражение имеет смысл , верно равенство ( = а.

  6. Выражение имеет смысл при любом а ≥ 0

  7. Если а ≥ 0 и b 0 , то Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

  8. Если а ≥ 0 и b 0 , то = . Корень из дроби , числитель которой неотрицателен , а знаменатель положителен , равен корню из числителя , делённому на корень из знаменателя.

  9. При любом значении х верно равенство = | x | .

Функция у = и её график.

  1. Если х = 0 , то у = 0 , поэтому начало координат принадлежит графику функции. 0

  2. Если х › 0 , у › 0 : график расположен в первой координатной четверти.

  3. Большему значению аргумента соответствует дольше значение функции ; график функции идёт вверх.

Квадратное уравнение и его корни.

  1. Квадратным уравнением называется уравнение вида a+bx +c = 0 , где а,b и с – некоторые числа , причём а ≠ 0.

  2. Квадратное уравнение в котором а = 1, называют приведённым квадратным уравнением.

  3. Если в квадратном уравнении a+bx +c = 0 хотя бы один из коэффициентов b или с равен нулю , то такое уравнение называют неполным квадратным уравнением

  4. При решении квадратного уравнения a+bx +c = 0 целесообразно поступать следующим образом: 1. Вычислить дискриминант и сравнить его с нулём ; 2. Если дискриминант положителен , то воспользоваться формулой корней , если дискриминант отрицателен , то записать , что корней нет.

  5. Сумма корней приведённого квадратного уравнения равна второму коэффициенту , взятому с противоположным знаком, а произведение корней равно свободному члену.(Теорема Виета).

  6. Если числа m и n таковы , что их сумма равна — p , а произведение равно g , то эти числа являются корнями уравнения +px +g = 0 ( Обратная теореме Виета )

Дробные рациональные уравнения.

  1. При решении дробных рациональных уравнений поступают следующим образом:

1 Найти общий знаменатель дробей , входящих в уравнение;

2 Умножить обе части уравнения на их общий знаменатель;

3Решить получившееся целое уравнение;

4 Исключить из его корней те , которые обращают в нуль общий знаменатель.

Числовые неравенства и их свойства.

  1. Число а больше числа b , если разность а – b – положительное число ; число а меньше числа b , если разность а – b – отрицательное число.

  2. Если а › b ,то b ‹ а; если а ‹ b ,то b › а.

  3. Если а ‹ b и b ‹ с , то а ‹ с .

  4. Если а ‹ b и с— любое число ,то а + с ‹ b + с. Если к обеим частям верного неравенства прибавить одно и то же число , то получится верное неравенство.

  5. Если а ‹ b и с— положительное число ,то ас ‹ bс. Если а ‹ b и с— отрицательное число ,то ас › bс.

Если обе части верного неравенства умножить или разделить на одно и то же положительное число , то получится верное равенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный , то получится верное равенство.

  1. Если а и b – положительные числа и а ‹ b ,то

  2. Если а ‹ b и с ‹ d ,то а + с ‹ b + d. Если почленно сложить верные неравенства одного знака , то получится верное неравенство.

  3. Если а ‹ b и с ‹ d , где а, b, с , dположительные числа ,то ас ‹ bd.

Если почленно перемножить верные неравенства одного знака , левые и правые части которых – положительные числа , то получится верное неравенство.

  1. Если а и b – положительные числа и а ‹ b ,то , где n – натуральное число.

  2. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

  3. Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения.

Неравенства с одной переменной и их системы.

  1. Пересечением двух множеств называют множество , состоящее из всех общих элементов этих множеств.

  2. Объединением двух множеств называют множество , состоящее из всех элементов , принадлежащих хотя бы одному из этих множеств.

  3. Решением неравенства с одной переменной называется значение переменной , которое обращает его в верное числовое неравенство.

  4. Решением системы неравенств с одной переменной называется значение переменной , при котором верно каждое из неравенств системы.

Степень с целым показателем и её свойства.

  1. Если а ≠ 0 и n – целое отрицательное число , то = .

  2. Выражению при целом отрицательном n ( так же как и при n = 0 ) не приписывают никакого значения ; это выражение не имеет смысла.

  3. Для каждого а ≠ 0 и любых целых m и n

= ; = ; = ;

  1. Для каждых а ≠ 0 и b ≠ 0 и любого n

= ; ( = ;

Стандартным видом числа а называют его запись в виде а* , где 1≤ а ≤ 10 и

n – число. Число n называется порядком числа а.

Геометрия 8 класс

Многоугольники

  1. Если несмежные звенья замкнутой ломаной не имеют общих точек , то эта ломаная называется многоугольником, её звенья называют сторонами многоугольника , а длина ломаной называется периметром многоугольника.

  2. Отрезок соединяющий любые две несоседние вершины , называеся диагональю многоугольника.

  3. Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой , проходящей через две его соседние вершины.

  4. Сумма углов выпуклого n- угольника равна ( n – 2 )*

  5. Внешним углом выпуклого многоугольника называется угол , смежный с углом многоугольника.

  6. Сумма внешних углов выпуклого многоугольника равна

  7. Две несмежные стороны четырехугольника называются противоположными.

  8. Сумма углов выпуклого четырехугольника равна

  9. Параллелограммом называется четырехугольник , у которого противоположные стороны попарно параллельны.

  10. Свойства параллелограмма:

  1. В параллелограмме противоположные стороны равны и противоположные углы равны.

  2. Диагонали параллелограмма точкой пересечения делятся пополам.

  1. Признаки параллелограмма:

  1. Если в четырёхугольнике две стороны равны и параллельны , то этот четырёхугольник – параллелограмм.

  2. Если в четырёхугольнике две стороны попарно равны , то этот четырёхугольник – параллелограмм.

  3. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам , то этот четырёхугольник – параллелограмм.

  1. Теорема Фалеса: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые , пересекающие вторую прямую , то они отсекут на второй прямой равные между собой отрезки.

  2. Трапецией называется четырёхугольник у которого две стороны параллельны , а две другие стороны не параллельны.

  3. Трапеция называется равнобедренной , если её боковые стороны равны.

  4. Трапеция называется прямоугольной , если один из её углов прямой.

  5. Прямоугольником называется параллелограмм , у которого все углы прямые.

  6. Свойства прямоугольника:

  1. В прямоугольнике противоположные стороны равны и все углы равны.

  2. Диагонали прямоугольника точкой пересечения делятся пополам.

  3. Диагонали прямоугольника равны.

  1. Признаки прямоугольника:

  1. Если в параллелограмме диагонали равны , то этот параллелограмм – прямоугольник.

  1. Ромбом называется параллелограмм , у которого все стороны равны.

  2. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.

  3. Квадратом называется прямоугольник у которого все стороны равны.

  4. Свойства квадрата:

  1. Все углы квадрата прямые.

  2. Диагонали квадрата равны , взаимно перпендикулярны , точкой пересечения делятся пополам и делят углы квадрата пополам.

Осевая и центральная симметрии.

  1. Две точки А и В называются симметричными относительно прямой а , если эта прямая проходит через середину отрезка АВ и перпендикулярна к нему.

  2. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.

  3. Прямая а называется ось симметрии фигуры.

  4. Две точки А и В называются симметричными относительно точки О , если О – середина отрезка АВ.

  5. Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

  6. Тока О называется центром симметрии фигуры.

Площадь многоугольника.

  1. Равные многоугольники имеют равные площади.

  2. Если многоугольник составлен из нескольких многоугольников , то его площадь равна сумме площадей этих многоугольников.

  3. Площадь квадрата равна квадрату его стороны.

  4. Площадь прямоугольника равна произведению его смежных сторон.

  5. Площадь параллелограмма равна произведению его основания на высоту.

  6. Площадь треугольника равна половине произведения его основания на высоту.

  7. Площадь прямоугольного треугольника равна произведению его катетов.

  8. Если высоты двух треугольников равны , то их площади относятся как основания.

  9. Если угол одного треугольника равен углу другого треугольника , то площади этих треугольников относятся как произведения сторон , заключающих равные углы.

  10. Площадь трапеции равна произведению полу суммы её оснований на высоту.

Теорема Пифагора.

  1. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетеов.

  2. Обратная теорема: если квадрат одной стороны треугольника равен сумме квадратов двух других сторон , то треугольник прямоугольный.

  3. Формула Герона : площадь S треугольника со сторонами a,b,c выражается формулой S = , где p = (a + b + c) — полупериметр треугольника.

Определение подобных фигур.

  1. Отношение отрезков АВ и СD называется отношение их длин , т.е. АВ/CD.

  2. Говорят ,что отрезки АВ и СD пропорциональны отрезкам АВ и СD , если

АВ/ АВ₁ = СD/ СD .

  1. Два треугольника называются подобными , если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

  2. Число k равное отношению сходственных сторон подобных треугольников , называется коэффициентом подобия.

  3. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников.

  1. 1 признак: если два угла одного треугольника соответственно равны двум углам другого , то такие треугольники подобны.

  2. 2 признак: если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы , заключённые между этими сторонами , равны , то такие треугольники подобны.

  3. 3 признак: если три стороны одного треугольника пропорциональны трём сторонам другого треугольника , то такие треугольники подобны.

  4. Средней линией треугольника называется отрезок , соединяющий середины двух его сторон.

  5. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

  6. Отрезок ХУ называется средним пропорциональным ( или средним геометрическим) для отрезков АВ и СD , если ХУ =

  7. Высота прямоугольного треугольника , проведённая из вершины прямого угла , есть среднее пропорциональное для отрезков , на которые делится гипотенуза этой высотой.

  8. Катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы , заключенного между катетом и высотой , проведённой из вершины прямого угла.

Соотношения между сторонами и углами прямоугольного треугольника.

  1. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

  2. Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

  3. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

  4. Тангенс угла равен отношению синуса к косинусу этого угла.

  5. Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника , то синусы этих углов равны , косинусы этих углов равны и тангенсы этих углов равны.

  6. Основное тригонометрическое тождество: = 1

Касательная к окружности.

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (dr ) , то прямая и окружность имеют две общие точки.

  2. Если расстояние от центра окружности до прямой равно радиусу окружности (d = r ) , то прямая и окружность имеют одну общую точку.

  3. Если расстояние от центра окружности до прямой больше радиуса окружности (dr ) , то прямая и окружность не имеют общих точек.

  4. Прямая , имеющая с окружностью одну общую точку , называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности.

  5. Касательная к окружности перпендикулярна к радиусу , проведенному к точке касания.

  6. Отрезки касательных к окружности , проведённые из одной точки , равны и составляют равные углы с прямой , проходящей через эту точку и центр окружности.

  7. Если прямая проходит через конец радиуса , лежащий на окружности , и перпендикулярна к этому радиусу , то она является касательной.

Центральные и вписанные углы.

  1. Дуга называется полуокружностью , если отрезок , соединяющий её концы , является диаметром окружности.

  2. Если дуга АВ окружности с центром О меньше полуокружности или является полуокружностью , то её градусная мера считается равной градусной мере центрального угла АОВ. Если же дуга АВ больше полуокружности , то уё градусная мера считается равной – уг.АОВ –

  3. Сумма градусных мер двух дуг окружности с общими концами равна

infourok.ru

Основные формулы и соотношения в 8 классе.

Основные формулы

и

соотношения.

в 8 классе

2011-2012 г.

Учитель: Удодова Л.В.

Календарно-тематическое планирование

Занятий дополнительного образования

по математике в 8 классе (1 час в неделю)

Кол-во часов

Тема занятия

Дата

1

1

Алгебраические дроби

2

1

Занимательные многоугольники

3

1

Складываем дроби

4

1

Увлекательные параллелограммы

5

1

Операции с дробями

6

1

Рациональные уравнения

7

1

Прямоугольник,ромб,квадрат

8

1

Системы уравнений

9

1

Средняя линия треугольника,

трапеции

10

1

Теорема Фалеса

11

1

Математическая карусель

12

1

Веселые параболы

13

1

Понятие площади

14

1

Гиперболы тоже умеют веселиться

15

1

Площади фигур

16

1

Преобразование графиков

17

1

Арифметический квадратный корень

18

1

Теорема Пифагора

19

1

Преобразование выражений с корнями

20

1

Больше задач-хороших и разных

21

1

Функция арифметического

квадратного корня

22

1

Осевая и центральные симметрии

23

1

Задачи для повторения

24

1

Олимпиадные задачи

25

1

Квадратные уравнения и их

особенности

26

1

Координаты на плоскости и

операции с ними

27

1

Дробные рациональные

уравнения в решении задач

28

1

Вектора и действия с ними

29

1

Неравенства и системы

неравенств

30

1

Системы уравнений

31

1

Степени с рациональным

показателем

32

1

И тоговый урок «Мои

Познания в математике»

Автор: Удодова Любовь Валентиновна

pedportal.net

Интернет школа Interneturok — бесплатные школьные уроки по алгебре в 8 классе онлайн, видео уроки по алгебре

Современный учебник по алгебре 8 класса содержит в себе материалы, ориентированные на повторение пройденного за предыдущий год, а также дальнейшее изучение квадратичных функций, их свойств, графиков, сравнение значений, произведение и частное дробей т.д. Школьные уроки алгебры в 8 классе – это изучение параболы, действительных чисел, иррациональных выражений, нулей, квадратных уравнений (полных и неполных), теоремы Виета, алгебраических дробей и многое другое.

Видеоуроки по алгебре

Во избежание проблем с усвоением этих и других тем воспользуйтесь разделом алгебра 8 класс онлайн, входящим в структуру нашего сайта, и вы увидите, как эффектно работают обучающие материалы в формате видео. Учитывая то, что уроки алгебры за 8 класс бесплатны и круглосуточно доступны всем пользователям, их использование становится действительно стоящим делом. Необходимость в посещении дополнительных занятий в школе или в вызове платного домашнего репетитора теперь может отпасть!

Программа по алгебре 8 класса

Числовые неравенства, неравенства с одной переменной, их системы и решение уравнений, понятие и свойства степеней с целым показателем, запись и действия с приближенными значениями – вот что предстоит узнать школьникам в рамках изучения алгебры в 8 классе.

Продолжая в этом курсе знакомство с одной из наиболее сложных математических дисциплин, пользователи смогут уделить особое внимание тому, как осуществляется решение задач по алгебре, и попрактиковаться в этом вместе с преподавателем, а потом и самостоятельно, используя тесты и тренажеры. Задачи на сложение и вычитание дробей, решения рациональных уравнений и многое другое представлено на страницах нашего портала. И для того, чтобы все это уметь успешно решать необходимо знать формулы по алгебре, изучение которых началось еще в предыдущем курсе алгебры 7 класса.

Серьезные темы, которым будет уделено внимание в 8 классе, связаны с изучением различных алгебраических функций, среди которых квадратичная функция. В течение нескольких уроков преподаватель будет знакомить учащихся с ее свойствами и построением графика, поскольку любая алгебраическая функция имеет графическое отражение. В этом классе они также продолжат изучать действительные числа, узнав, что такое его модуль и какие бывают основные числовые множества, а также другие аспекты этой важной темы.

В конце курса будет уделено внимание закреплению изученных формул по алгебре и новым математическим понятиям. Это очень важный материал, поскольку для тех, кто хорошо понимает его суть в дальнейшем, решение задач по алгебре не составит особого труда.

На страницах нашего портала имеется множество видеоуроков, которые позволят ученикам средних общеобразовательных школ лучше ориентироваться в этой довольно сложной науке. Здесь размещены видеоуроки, которые были сняты с участием опытных преподавателей школьных дисциплин. С их помощью сложные темы в алгебре будут раскрыты максимально быстро, и восьмиклассникам будет намного легче продолжать освоение этой науки. Дробные рациональные уравнения и их решение графическим способом, формулы коней квадратного уравнения, свойства арифметического квадратного корня и материалы на многие другие темы в формате видео находятся на нашем портале в соответствующих разделах.

interneturok.ru

Математика 8 класс все правила и формулы по алгебре и геометрии

Графическое решение линейного уравнения с двуям переменными, способы решения линейного уровнения с двумя переменными.

Математика 8 класс все правила и формулы по алгебре и геометрии

Задача 1. Диагональ прямоугольника равна 16 и составляет со стороной угол 30°. Найти площадь прямоугольника.

Катет AD можно было найти иначе – через косинус ∠САD. Так как косинусом острого угла прямоугольного треугольника называется отношение прилежащего углу катета к гипотенузе, то отсюда следует: катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла.

Подставим найденные значения в формулу площади прямоугольника.

Задача 2. Диагональ прямоугольника составляет с его стороной, равной 10 см, угол 60°. Найти периметр и площадь прямоугольника.

8.2.3. Прямоугольник. Решение задач

Задача 1. Одна сторона прямоугольника меньше другой на 7 см, а диагональ прямоугольника равна 17 см. Найти периметр прямоугольника.

AB 2 +AD 2 =BD 2 . Получаем: х 2 +(х+7) 2 =17 2 ⇒ х 2 +х 2 +14х+49=289;

2х 2 +14х-240=0; х 2 +7х-120=0, отсюда по теореме Виета х1=-15; х2=8.

Следовательно, АВ=8 см, AD=8+7=15 см. Периметр прямоугольника:

Задача 2. Периметр прямоугольника 94 см, а диагональ 37 см. Найти площадь прямоугольника.

AB 2 +AD 2 =BD 2 . Получаем: х 2 +(47-х) 2 =37 2 ⇒ х 2 +47 2 -94х+ х 2 =1369;

2х 2 -94х+2209—1369=0; 2х 2 -94х+840=0. Делим обе части равенства на 2. Получаем:

Х 2 -47х+420=0. Найдем дискриминант.

D=b 2 -4ac=47 2 -4∙1∙420=2209—1680=529=23 2 >0; 2 д. к.

Так как АВ=х, то либо АВ=12, тогда AD=47-12=35; либо АВ=35, тогда AD=47-35=12. Таким образом, стороны прямоугольника равны 12 см и 35 см. Площадь прямоугольника S□ = ABAD=1235=420 (см 2 ). Ответ: 420 см 2 .

Задача 3. Стороны прямоугольника относятся как 3:4, а площадь прямоугольника равна 108 см 2 . Найти диагональ прямоугольника.

Так как S□ = ABAD и по условию равна 108 см 2 , то можно составить уравнение:

4х=108. Тогда 12х 2 =108, а разделив обе части равенства на 12, получаем:

Х 2 =9. Отсюда х=3, так как х – положительное число. Стороны прямоугольника

Тогда АВ=3х=33=9 и AD=4х=43=12. Из прямоугольного треугольника BAD по теореме Пифагора найдем BD – искомую диагональ прямоугольника.

BD 2 =AB 2 +AD 2 =9 2 +12 2 =81+144=225, отсюда BD=15 см. Ответ: 15 см.

Задача 4. Биссектриса одного из углов прямоугольника делит сторону прямоугольника пополам. Найдите диагональ прямоугольника, если его меньшая сторона равна 15 см.

АС 2 =AB 2 +ВС 2 =15 2 +30 2 =225+900=1125, отсюда получаем:

Задача 5. В прямоугольнике точка пересечения диагоналей отстоит от меньшей стороны на 7 см дальше, чем от большей стороны. Диагональ прямоугольника равна 26 см. Найдите стороны прямоугольника.

ОМ 2 +МА 2 =АО 2 или х 2 +(х+7) 2 =13 2 . Упрощаем равенство:

Х 2 +х 2 +14х+49=169; 2х 2 +14х-120=0; х 2 +7х-60=0. Корни этого приведенного квадратного уравнения удобно найти по теореме Виета.

Х1=-12, х2=5. Так как сторона выражается положительным числом, то ОМ=х=5 см. тогда ОК=5+7=12 (см). АК=ОМ=5 см и АМ=ОК=12 см – это половинки сторон прямоугольника. Тогда АВ=2АК=10 см и AD=2МА=24 см. Ответ: 10 см и 24 см.

8.2.5. Основные тригонометрические тождества. Часть 2

Основные тригонометрические тождества.

Пример 1. Вычислить значения cosα, tgα, ctgα, если sinα = 5/13 и угол α – острый.

Решение. Найдем cosα по формуле 1б), учитывая, что угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Так как по формуле 6) tgα ctgα = 1, то ctgα = 1 : tgα. Говорят, что котангенс – это «перевернутый» тангенс, следовательно,

Пример 2. Вычислить значения sinα, tgα, ctgα, если cosα = 0,6 и угол α – острый.

Тангенс α найдем по формуле 2). Подставим значения синуса и косинуса.

Пример 3. Вычислить значения sinα, cosα, ctgα, если tgα = 15/8 и угол α – острый.

Котангенс – это «перевернутый» тангенс, поэтому, ctgα = 8/15. Далее находим cosα.

Применим формулу 7), подставив в эту формулу данное значение тангенса Α.

Пример 4. Вычислить значения sinα, cosα, tgα, если ctgα = 9/40 и угол α – острый.

Тангенс – это «перевернутый» котангенс, поэтому, tgα = 40/9. Далее находим cosα,

Применяя ту же формулу 7). Подставим в эту формулу полученное значение тангенса Α.

8.2.4. Основные тригонометрические тождества. Часть 1

Основные тригонометрические тождества.

Secα читают: «секанс альфа». Это число, обратное косинусу альфа.

Соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

Е) sin 4 α+2sin 2 αcos 2 α+cos 4 α; Ж) tg 2 α – sin 2 αtg 2 α; З) ctg 2 αcos 2 α – ctg 2 α; И) cos 2 α+tg 2 αcos 2 α.

Б) cos 2 α – 1 =- (1 – cos 2 α) = — sin 2 α также применили формулу 1);

В) (1 – cosα)(1+cosα) = 1 – cos 2 α = sin 2 α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a 2 – b 2 , а затем формулу 1)

poiskvstavropole.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *