№139 Выразить в тоннах Математика Виленкин 5 класс – Рамблер/класс
№139 Выразить в тоннах Математика Виленкин 5 класс – Рамблер/класс
Интересные вопросы
Школа
Подскажите, как бороться с грубым отношением одноклассников к моему ребенку?
Новости
Поделитесь, сколько вы потратили на подготовку ребенка к учебному году?
Школа
Объясните, это правда, что родители теперь будут информироваться о снижении успеваемости в школе?
Школа
Когда в 2018 году намечено проведение основного периода ЕГЭ?
Новости
Будет ли как-то улучшаться система проверки и организации итоговых сочинений?
Вузы
Подскажите, почему закрыли прием в Московский институт телевидения и радиовещания «Останкино»?
Приветик кто силен в измерительных системах?!
помогите перевести в тонны:
а) 6000 кг; б) 5000 ц; в) 18 000 кг.
ответы
а) 6000 кг = 6 т; б) 5000 ц = 500 т; в) 18000 кг = 18 т.
ваш ответ
Можно ввести 4000 cимволов
отправить
дежурный
Нажимая кнопку «отправить», вы принимаете условия пользовательского соглашения
похожие темы
3 класс
Репетитор
Химия
Алгебра
похожие вопросы 5
Координатная прямая. Математика 5 класс.Зубарева И.И.Параграф 10, задание 191
Укажите начало отсчёта и координаты точек А, В, С, (Подробнее…)
ГДЗЗубарева И.И.Математика5 класс
Приветик! Кто решил? № 411 Математика 6 класс Виленкин.
Выполните вычисления с помощью микрокалькулятора и резуль-
тат округлите до тысячных:
3,281 ∙ 0,57 + 4,356 ∙ 0,278 — 13,758 (Подробнее…)
ГДЗМатематика6 классВиленкин Н.Я.
Помогите выбрать утверждения. Математика базовый уровень ЕГЭ — 2017. Вар.№1. Зад.№18. Под руководством Ященко И.В.
Здравствуйте! Перед волейбольным турниром измерили рост игроков волейбольной команды города N. Оказалось, что рост каждого из (Подробнее…)
ЕГЭЭкзаменыМатематикаЯщенко И.В.
16. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)… Цыбулько И. П. Русский язык ЕГЭ-2017 ГДЗ. Вариант 13.
16.
Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)
в предложении должна(-ы) стоять запятая(-ые). (Подробнее…)
ГДЗЕГЭРусский языкЦыбулько И.П.
ЕГЭ-2017 Цыбулько И. П. Русский язык ГДЗ. Вариант 13. 18. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)…
18.
Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых)
в предложении должна(-ы) стоять запятая(-ые). (Подробнее…)
ГДЗЕГЭРусский языкЦыбулько И.П.
Ответы Задание 139 Глава 1 ГДЗ по математике 5 класс Виленкин Жохов Чесноков Шварцбурд учебник
Глава 1
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
Глава 2
8508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849
Средняя оценка 0 / 5. Количество оценок: 0
Оценок пока нет. Поставьте оценку первым.
CZ — Чешская цифровая математическая библиотека: О средних Нёрлунда рядов Виленкина-Фурье
[1] Благота, И.: О неравенстве нормы по отношению к системам типа Виленкина . Акта Математика. Повесили. 89 (2000), 15-27. DOI 10.1023/A:1026769207159 | MR 1912235 | Zbl 0973.42020
[2] Благота, И.: Связь между ядрами Дирихле относительно виленкиноподобных систем . Акта акад. Педагог. Агриенсис, Секта. Мат. (NS) 22 (1994), 109-114. Збл 0882.42017
[3] Благота, И., Гат, Г.: Суммируемость по норме логарифмических средних Нёрлунда на неограниченных группах Виленкина . Анальный. Теория прил. 24 (2008), 1-17. DOI 10.1007/s10496-008-0001-z | МР 2422455 | Zbl 1164.42022
[4] Благота И., Тефнадзе Г.: О {$(C,\alpha)$}-средних по системе Уолша . Анальный. Мат. 40 (2014), 161-174. DOI 10.1007/s10476-014-0301-9 | МР 3240221 | Zbl 1313.42083
[5] Благота И. , Тефнадзе Г.: Теорема сильной сходимости для средних Виленкина-Фейера 91$}-функции на обобщенной группе Уолша-Пэли . проц. Являюсь. Мат. соц. 77 (1979), 111-116. MR 0539641
[7] G{á}t, G.: Средние Чезаро интегрируемых функций по неограниченным системам Виленкина . Дж. Прибл. Теория 124 (2003), 25-43. DOI 10.1016/S0021-9045(03)00075-3 | МР 2010779 | Збл 1032.43003
[8] Г{а}т, Г.: Исследования некоторых операторов по системе Виленкина . Акта Математика. Повесили. 61 (1993), 131-149. DOI 10.1007/BF01872107 | MR 1200968 | Zbl 0805.42019
[9] Гат Г., Гогинава Ю.: Сходимость почти всюду {$(C,\alpha)$}-средних квадратичных частичных сумм двойных рядов Виленкина-Фурье . Грузинская математика. Журнал 13 (2006), 447-462. МР 2271060 | Zbl 1107.42006
[10] Гат Г., Гогинава Ю.: Равномерная и {$L$}-сходимость логарифмических средних рядов Уолша-Фурье . Акта Математика. син., англ. сер. 22 (2006), 497-506. DOI 10.1007/s10114-005-0648-8 | MR 2214371
[11] Гат Г. , Надь К.: О логарифмической суммируемости ряда Фурье . Грузинская математика. Журнал 18 (2011), 237-248. MR 2805978 | Zbl 1221.42049
[12] Гогинава Ю.: Неравенство слабого типа для максимального оператора средних {$(C,\alpha)$} двумерных рядов Уолша-Фурье . Анальный. Мат. 36 (2010), 1-31. DOI 10.1007/s10476-010-0101-9 | MR 2606574
[13] Гогинава, У.: Максимальные операторы средних Фейера-Уолша . Acta Sci. Мат. 74 (2008), 615-624. MR 2487936 | Збл 1199.42127
[14] Гогинава У.: Максимальный оператор средних Марцинкевича-Фейера {$d$}-мерного ряда Уолша-Фурье . Восток Дж. Прибл. 12 (2006), 295-302. MR 2252557
[15] Гогинава, Ю.: Максимальный оператор средних {$(C,\alpha)$} ряда Уолша-Фурье . Анна. ун-т науч. Будапешт. Роландо Этвёш, Sect. вычисл. 26 (2006), 127-135. MR 2388683 | Zbl 1121.42020
[16] Гогинава, У.: Сходимость почти всюду подпоследовательности средних логарифмов ряда Уолша-Фурье . Акта Математика. акад. Педагог. Нихази. (NS) (только в электронном виде) 21 (2005), 169-175. МР 2162613 | Zbl 1093.42018
[17] Гогинава Ю.: Об аппроксимативных свойствах чезаро-средних отрицательного порядка рядов Уолша-Фурье . Дж. Прибл. Теория 115 (2002), 9-20. DOI 10.1006/jath.2001.3632 | MR 1888974 | Zbl 0998.42018
[18] Мур, К. Н.: Суммируемые ряды и коэффициенты сходимости . Dover Publications, Нью-Йорк (1966). МР 0201863 | Збл 0142.30704
[19] Мориц Ф., Сиддики А.Х.: Аппроксимация средними Нёрлунда ряда Уолша-Фурье . Дж. Прибл. Теория 70 (1992), 375-389. DOI 10.1016/0021-9045(92)-X | MR 1178380 | Zbl 0757.42009
[20] Nagy, K.: Аппроксимация средними Нёрлунда двойных рядов Уолша-Фурье для липшицевых функций . Мат. Неравный. заявл. 15 (2012), 301-322. МР 2962234 | Zbl 1243.42038
[21] Nagy, K.: Аппроксимация средними Нёрлунда ряда Уолша-Качмарца-Фурье . Грузинская математика. Журнал 18 (2011), 147-162. MR 2787349 | Zbl 1210. 42043
[22] Nagy, K.: Аппроксимация средними Чезаро отрицательного порядка ряда Уолша-Качмарца-Фурье . Восток Дж. Прибл. 16 (2010), 297-311. MR 2789336 | Zbl 1216.42006
[23] Nagy, K.: Аппроксимация средними Нёрлунда квадратичных частичных сумм двойного ряда Уолша-Фурье . Анальный. Мат. 36 (2010), 299-319. DOI 10.1007/s10476-010-0404-x | MR 2738323 | Zbl 1240.42133
[24] Пал, Дж., Саймон, П.: Об обобщении понятия производной . Акта Математика. акад. науч. Повесили. 29 (1977), 155-164. DOI 10.1007/BF01896477 | МР 0450884 | Zbl 0345.42011
[25] Schipp, F.: Перестановки рядов в системе Уолша . Мат. Notes 18 (1976), 701-706 перевод с \kern 3sp Матем. заметки 18 (1975), 193-201. MR 0390633
[26] Simon, P.: Суммируемость по Чезаро относительно двухпараметрических систем Уолша . Монац. Мат. 131 (2000), 321-334. DOI 10.1007/s006050070004 | МР 1813992
[27] Simon, P.: Теорема сильной сходимости для рядов Виленкина-Фурье . Дж. Матем. Анальный. заявл. 245 (2000), 52-68. DOI 10.1006/jmaa.2000.6732 | MR 1756576 | Zbl 0987.42022
[28] Simon, P.: Исследования по системе Виленкина . Анна. ун-т науч. Будапешт. Роландо Этвёш, Sect. Мат. 27 (1984), 87-101. МР 0823096 | Zbl 0586.43001
[29] Simon, P., Weisz, F.: Слабые неравенства для суммирования по Чезаро и Риссу ряда Уолша-Фурье . Дж. Прибл. Теория 151 (2008), 1-19. DOI 10.1016/j.jat.2007.05.004 | MR 2403893 | Zbl 1143.42032
[30] Тефнадзе Г.: О максимальных операторах логарифмических средних Рисса ряда Виленкина-Фурье . Стад. науч. Мат. Повесили. 51 (2014), 105-120. MR 3188506 | Zbl 1299.42098
[31] Тефнадзе Г.: О частных суммах ряда Виленкина-Фурье . Дж. Контемп. Мат. Анальный. 49 23-32 русский (2014). DOI 10.3103/S1068362314010038 | MR 3237573
[32] Тефнадзе Г.: Теоремы сильной сходимости для средних Уолша-Фейера . Акта Математика. Повесили. 142 (2014), 244-259. DOI 10.1007/s10474-013-0361-5 | MR 3158862 | Zbl 1313. 42086
[33] Тефнадзе Г.: О максимальных операторах средних Виленкина-Фейера на пространствах Харди . Мат. Неравный. заявл. 16 (2013), 301-312. MR 3060398 | Zbl 1263.42008
[34] Тефнадзе Г.: О максимальных операторах средних Виленкина-Фейера . Турок. Дж. Матем. 37 (2013), 308-318. MR 3040854 | Збл 1278.42037
[35] Тефнадзе Г.: Замечание о коэффициентах Фурье и частных суммах рядов Виленкина-Фурье . Акта Математика. акад. Педагог. Нихази. (NS) (только в электронном виде) 28 (2012), 167-176. MR 3048092 | Zbl 1289.42084
[36] Тефнадзе Г.: Средства Фейера ряда Виленкина-Фурье . Стад. науч. Мат. Повесили. 49 (2012), 79-90. MR 3059789 | Zbl 1265.42099
[37] Тефнадзе Г.: Максимальные операторы логарифмических средних одномерных рядов Виленкина-Фурье . Акта Математика. акад. Педагог. Нихази. (NS) (только в электронном виде) 27 (2011), 245-256. MR 2880697 | Zbl 1265.42100
[38] Виленкин Н. Дж.: Об одном классе полных ортонормированных систем .