8 класс

Задачник информатика 8 класс: Книга: «Информатика и ИКТ. 8-11 класс. Задачник-практикум. В 2-х томах» — Залогова, Семакин, Хеннер, Плаксин, Русаков, Шестакова, Шеина, Русакова. Купить книгу, читать рецензии | ISBN 978-5-9963-1853-7

Содержание

Алгоритмические конструкции. Информатика, 8 класс: уроки, тесты, задания.

1. Алгоритмические конструкции

Сложность: лёгкое

1
2. Робот

Сложность: лёгкое

1
3. Операция mod

Сложность: среднее

2
4. Операция div

Сложность: среднее

2
5. Формула

Сложность: среднее

2
6. Выполнение алгоритма

Сложность: сложное

3
7. Алгоритмический язык

Сложность: сложное

4
8. Неполное ветвление

Сложность: сложное

4
9. Цикл с постусловием

Сложность: сложное

3

Начальные сведения о языке программирования Паскаль. Информатика, 8 класс: уроки, тесты, задания.

1. Алфавит

Сложность: лёгкое

1
2. Служебные слова

Сложность: лёгкое

1
3. Типы данных

Сложность: лёгкое

1
4. Изображения

Сложность: лёгкое

1
5. Данные

Сложность: среднее

2
6. Описание переменных

Сложность: среднее

2
7. Имена

Сложность: среднее

2
8. Процесс выполнения операторов присваивания

Сложность: среднее

3
9. Выражения

Сложность: сложное

3

8 класс — (Занимательные задачи)

Гири цветные, аферисты, таможенники и весы-коромысла. ..

Аферисты перевозили за границу (через таможню) три пары гирь разных цветов, в каждой паре одна (из благородного металла — платины) гиря тяжелее другой (фальшивой, подделки).

Все тяжелые гири (так же, как и все легкие) весят одинаково. У таможенников имеются весы коромыслового типа.

Задание: Как таможенникам отделить двумя взвешиваниями все тяжелые гири от легких – фальшивых?


Про Витю и Митю

Из двух близнецов – Вити и Мити – один всегда говорит правду, а второй всегда врет.

Какой единственный вопрос относительно их имен нужно задать

любому из братьев, чтобы узнать, кто из них Митя, а кто Витя?


                                  Водяная лилия

Некогда был пруд, в центре которого рос один лист водяной лилии.

Каждый день число таких листьев удваивалось, и на десятый день

вся поверхность пруда уже была заполнена листьями лилий.

Сколько дней понадобилось, чтобы заполнить листьями половину пруда?
Сосчитайте, сколько листьев выросло к десятому дню.  


Золотая лихорадка

Этот случай имел место во времена «золотой лихорадки». На одном из приисков старатели были возмущены действиями Джо Макдональда – хозяина салуна, принимавшего от них в уплату золотой песок. Очень уж необычными были гири, с помощью которых тот взвешивал золото: 1, 2, 4, 8, 16, 32 и 64 грамма. Джо утверждал, что с помощью такого набора гирь он может взвесить любую порцию золотого песка, не превышающую 100 граммов. Прав ли Джо Макдональд? Какой наибольший вес могут «взять» такие гири?

Как с помощью названных гирь набрать вес: 24;49;71;106.

Найдите такой набор из 5-ти гирь, чтобы располагая их на одной чаше весов, можно было бы взвесить любой груз до 31 кг включительно.

Каким наименьшим числом гирь можно взвесить груз от 1 до 63 кг с точностью до 1 кг, помещая гири только на одну чашку весов?


Золотая цепочка

У одного путешественника не было денег, но была золотая цепочка из семи звеньев. Хозяин гостиницы, к которому обратился путешественник с просьбой о ночлеге, согласился держать постояльца неделю, если тот будет давать ему ежедневно в виде платы одно из звеньев цепочки. Какое одно звено достаточно распилить, чтобы путешественник мог ежедневно в течение семи дней расплачиваться с хозяином гостиницы? (При расчете хозяин может возвращать полученные у него раньше звенья).

Информатика (+программирование) 7-8 класс, муниципальный этап (2 этап), г. Москва, 2017-2018 учебный год

Продолжительность тура составляет 2 часа (120 минут).

Каждая задача оценивается в 10 баллов. Итоговый балл выставляется как сумма баллов за 4 задачи с лучшим результатом (т.е. для получения максимального балла нужно решить любые 4 задачи). Вы можете отправить на проверку не более 100 решений суммарно по всем задачам 1–7.

Во время тура в задачах 1–4 производится проверка ответа на соответствие формату, описанному в условии задачи. Если формат записи ответа соответствует условию задачи, решение получает статус «Принято на проверку», иначе решение получает статус «Неправильный формат ответа». После окончания олимпиады будет проверено и оценено последнее принятое на проверку решение по каждой задаче 1–4.


Содержание

    1. Задачи
    2. Задачи по программированию

archive_7-8


Задачи

Задача 1. «Счастливый билет»

Содержание ↑

Петя едет в автобусе с кондуктором, который отрывает билеты от одной ленты. Билеты на ленте пронумерованы последовательными шестизначными числами. Петя увидел номер билета, который кондуктор оторвал очередному пассажиру, и хочет получить от кондуктора счастливый билет, т.е. такой билет, у которого сумма первых трёх цифр равна сумме последних трёх цифр. Например, билет 123051 является счастливым, потому что 1 + 2 + 3 = 0 + 5 + 1. Помогите Пете определить, когда ему нужно подойти к кондуктору за билетом, т. е. определите номер ближайшего счастливого билета, который оторвёт кондуктор.

Вам необходимо решить задачу для пяти различных номеров билетов:

125112

265680

398083

412715

579994

Ответ на эту задачу нужно записать в виде пяти шестизначных чисел, каждое число записано в одной строке, в том же порядке, как они записаны в условии (в первой строке – ответ для первого числа, во второй строке – для второго и т. д.). Если вы не можете дать ответ для какого-то числа, напишите вместо него любое шестизначное число.

Ответ:

125116
265706
398299
413008
580049

Задача 2. «Бегущий город»

Содержание ↑

Город состоит из очень большого числа площадей, пронумерованных натуральными числами, расположенными в вершинах двоичного дерева (см. рисунок на следующей странице). Дороги в городе проходят между вершинами дерева от родителя (вершины с номером n) к потомкам (вершинам с номерами 2n и 2n + 1). План начальной части города (только небольшой его части, сам город очень большой) приведён на следующей странице. Игра «Бегущий город» заключается в том, что участники стартуют на площади номер 1 и должны добраться до контрольных пунктов, размещённых на площадях города. Ваша задача построить пути от площади 1 до пяти контрольных пунктов, размещённых на площадях c номерами 50, 118, 132, 511, 2017.

Ответ на эту задачу следует записать в пяти строках. В первой строке нужно записать маршрут от площади номер 1 до площади номер 50, во второй строке – от площади 1 до площади 118, в третьей строке – от площади 1 до площади 132, в четвёртой строке – от площади 1 до площади 511, в пятой строке – от площади 1 до площади 2017.

Каждый маршрут записывается в виде последовательности номеров площадей через пробел. Последовательность должна начинаться числом 1 и заканчиваться нужным номером площади. Каждые две соседние площади в одном маршруте должны быть соединены дорогой, в одном маршруте номера площадей не должны повторяться. Например, маршрут от площади 1 до площади 13 нужно записать в виде

1 3 6 13

При сдаче задания проверяется то, что ответ состоит из пяти строк, каждая строка начинается с числа 1, и строки заканчиваются числами 50, 118, 132, 511, 2017 соответственно. Решение получает статус «Принято на проверку», если выполнены эти условия, при этом корректность самого маршрута не проверяется. Если вы не можете найти ответ для какой-то из площадей, напишите в этой строке два числа: 1 и конечный номер площади.

Ответ:

1 3 6 12 25 50
1 3 7 14 29 59 118
1 2 4 8 16 33 66 132
1 3 7 15 31 63 127 255 511
1 3 7 15 31 63 126 252 504 1008 2017

Задача 3. «Периметр»

Содержание ↑

В здании был большой конференц-зал в форме прямоугольника. Его разделили на четыре меньших прямоугольных помещения, поставив две перпендикулярные стены (см. рисунок).

 

Для проведения ремонта необходимо определить периметр каждого из четырёх помещений. Три из четырёх помещений имеют периметр, равный a, b, c (в порядке обхода по часовой стрелке, начиная с левого верхнего угла плана). Определите периметр четвёртого помещения.

Ответом на эту задачу является некоторое выражение, которое может содержать целые числа, переменные a, b и c (записываемые английскими буквами), операции сложения (обозначаются «+»), вычитания (обозначаются «-»), умножения (обозначаются «*»), деления (обозначаются «/») и круглые скобки для изменения порядка действий. Запись вида «2a» для обозначения произведения числа 2 и переменной a неверная, нужно писать «2 * a».

Пример правильного (по форме записи) выражения: a + (b c) * 2.

Ответ: a — b + c

Задача 4. «Черно-белая графика»

Содержание ↑

В этой задаче вам нужно картинку из чёрных и белых пикселей закодировать как можно более короткой строкой по описанным ниже правилам.

Картинка представляет собой прямоугольную таблицу, каждая клеточка которой покрашена в чёрный или белый цвет. Сначала чёрные клеточки обозначаются буквой «B», белые клеточки обозначаются буквой «W». Затем буквы из таблицы записываются подряд в одну строку: сначала первая строка, затем вторая и т. д.

Например, пусть дана следующая картинка:

Обозначим клеточки буквами

Теперь запишем все буквы в одну строку: «WBBBWBBBW».

Далее эту строку можно сжать, используя следующие правила.

Если перед буквой записано число, то это означает повторение данной буквы указанное число раз. Например, вместо «BBB» можно написать «3B».

После числа можно написать не одну букву, а последовательность букв в скобках.

Например, запись «4(BW)» будет означать последовательность «BWBWBWBW».

Также внутри скобок могут быть записаны не только буквы «B» и «W», но и любые правильно закодированные последовательности, в т.ч. содержащие числа и скобки.

Приведённую выше картинку можно закодировать, например, таким способом: «2(W3B)W».

Дана следующая картинка. Закодируйте её при помощи как можно более короткой последовательности.

Ответ на эту задачу необходимо записать в виде строки, состоящей из букв «B» и «W», чисел и скобок, последовательность должна быть корректной и после распаковки должна соответствовать приведённой картинке. При сдаче задачи проверяется корректность последовательности и то, что в результате распаковки будет получена данная картинка. Если последовательность некорректна или не соответствует картинке, ваше решение получит статус «Неверный формат ответа».

Чем короче будет ваше решение, тем больше баллов вы получите. При подсчёте длины решения учитываются все символы: буквы, цифры и скобки.

Ответ: 3(3(3BW)3(3WB))

Задачи по программированию

Содержание ↑

Решением задач 5–7 является программа, написанная на одном из языков программирования. Для получения полного балла не обязательно решать задачи 5–7.

Ограничение по времени работы программы в задачах 5–7 – 1 секунда.

Решения оцениваются, только если они выдают правильный ответ на всех примерах входных и выходных данных, приведённых в условии задачи. Проверка решений производится сразу же после отправки, по каждой задаче оценивается решение, набравшее наибольшее число баллов. На странице «Итог» вы можете видеть окончательный балл по задачам 5–7.

Во всех задачах целые числа во входных и выходных данных записываются только цифрами (т.е. недопустимо использование записи 1000000.0 или 1e6 вместо числа 1000000).

Каждое число во входных данных записано в отдельной строке.

Задача 5. «Комета Бармалея»

Содержание ↑

Как известно, комета Бармалея видна с Земли каждые C лет. Любопытно, что это происходит в годы, кратные C, т.е. C, 2×C, 3×C и т.д. Не каждому суждено увидеть эту комету хотя бы однажды в жизни. Впрочем, находятся счастливые долгожители, заставшие её прилёт даже несколько раз.

Считается, что впервые эту комету увидел и документировал знаменитый

средневековый астроном Бармалео Бармалей. В честь него она и получила своё имя. Говорят, за свою долгую жизнь он успел сделать много великих открытий в самых разных областях науки. Однако недавно историки засомневались, правда ли все открытия, которые ему приписываются, Бармалео Бармалей сделал сам. В частности, они заинтересовались, сколько раз за свою жизнь учёный мог видеть комету, названную в его честь.

Бармалео Бармалей родился 1 января в год A и умер 31 декабря в год B. Сколько раз за его жизнь комета была видна с Земли? Мы считаем, что он мог видеть комету, даже будучимладенцем или глубоким стариком, т.е. если она прилетала в год A или B.

Программа получает на вход три целых числа A, B и C (1 ≤ A B ≤ 2×109, 1 ≤ C ≤ 2×109) и должна вывести одно целое число – количество раз, которое комета была видна между годами A и B включительно.

Пример входных и выходных данных

 

Ввод Вывод  Примечание
1850

1900

50

 2  Комета пролетала около Земли в 1850 и 1900 годах. Бармалео Бармалей застал оба раза.

Система оценивания

Решение, правильно работающее только для случаев, когда все числа не превосходят 10 000, будет оцениваться в 6 баллов.

Решение:

a = int(input())
b = int(input())
c = int(input())
print(b // c - (a - 1) // c)

Задача 6. «Переключение окон»

Содержание ↑

Дима – программист, поэтому на его компьютере всегда открыто много окон. Так как у Димы не очень большой монитор, на нём может отображаться только одно окно. В каждый момент времени оконный менеджер хранит список открытых окон, окно с номером 1 отображается на мониторе. Для переключения окон Дима использует сочетание клавиш Alt + Tab. Если удерживать эту кнопку нажатой в течение T секунд, то T + 1 -е по счёту окно в текущей нумерации переместится на первую позицию, а относительный порядок остальных окон не изменится. Например, на рисунке ниже показано, что произойдёт с порядком окон, если нажимать на Alt + Tab в течение 3 секунд.

Если держать Alt + Tab N – 1 секунду, то первым станет последнее окно из списка.

Список открытых окон «зациклен», за последним окном следует первое окно из списка, т. е. если удерживать Alt + Tab нажатым N секунд, то окно, которое было первым в списке, останется на первом месте. Если удерживать Alt + Tab N + 1 секунду, на первое место переместится второе по счёту окно и т.д.

В начале рабочего дня любимая среда разработки Димы имела номер M в списке открытых окон. В течение дня Дима K раз использовал сочетание клавиш Alt + Tab.

Определите, на какой позиции находится его любимая среда разработки в конце дня.

Первая строка входных данных содержит целое число N, 1 ≤ N ≤ 105 – количество окон на экране. Вторая строка содержит целое число M, 1 ≤ M N – номер, который имела любимая среда разработки Димы в начале дня. Третья строка содержит целое число K, 1 ≤ K ≤ 105 – количество раз, которое Дима нажимал Alt + Tab. В последующих K строках содержатся целые положительные числа, не превосходящие 105 – длительность каждого нажатия в секундах.

Программа должна вывести одно целое число – позицию любимой среды Димы в конце рабочего дня.

Пример входных и выходных данных
Ввод Вывод Примечание
3

2

3

1

5

2

3 На экране три окна. Пронумеруем окна от 1 до 3 в том порядке, в котором они располагались в начале дня. Димина среда разработки имела номер 2. Дима нажимал на Alt + Tab три раза, продолжительность нажатий была 1, 5 и 2 секунды. Тогда расположение окон после каждого из нажатий будет таким:
  • Нажатие в течение 1 с, второе окно перемещается в начало – 2 1 3.
  • Нажатие в течение 5 с, третье окно перемещается в начало – 3 2 1
  • Нажатие в течение 2 с, третье окно перемещается в начало – 1 3 2

В результате Димина среда разработки оказалась на месте 3 в списке

Система оценивания

Решение, правильно работающее только для случаев, когда 1 ≤ N ≤ 3, 1 ≤ K ≤ 3 и все продолжительности нажатий не превосходят N – 1, будет оцениваться в 3 балла.

Решение, правильно работающее только для случаев, когда 1 ≤ N ≤ 100 и 1 ≤ K ≤ 100, будет оцениваться в 6 баллов.

Решение:

n = int(input())
m = int(input())
k = int(input())
for i in range(k):
 t = int(input()) % n
 if 1 + t > m:
 m += 1
 elif 1 + t == m:
 m = 1
print(m)

Задача 7.

«SNTP»

Содержание ↑

Для того чтобы компьютеры поддерживали актуальное время, они могут обращаться к серверам точного времени SNTP (Simple Network Time Protocol). К сожалению, компьютер не может просто получить время у сервера, потому что информация по сети передаётся не мгновенно: пока сообщение с текущим временем дойдёт до компьютера, оно потеряет свою актуальность. Протокол взаимодействия клиента (компьютера, запрашивающего точное время) и сервера (компьютера, выдающего точное время) выглядит следующим образом:

  1. Клиент отправляет запрос на сервер и запоминает время отправления A (по клиентскому времени).
  2. Сервер получает запрос в момент времени B (по точному серверному времени) и отправляет клиенту сообщение, содержащее время B.
  3. Клиент получает ответ на свой запрос в момент времени C (по клиентскому времени) и запоминает его. Теперь клиент, из предположения, что сетевые задержки при передаче сообщений от клиента серверу и от сервера клиенту одинаковы, может определить и установить себе точное время, используя известные значения A, B, C.

Вам предстоит реализовать алгоритм, с точностью до секунды определяющий точное время для установки на клиенте по известным A, B и C. При необходимости округлите результат до целого числа секунд по правилам арифметики (в меньшую сторону, если дробная часть числа меньше ½, иначе в большую сторону).

Возможно, что, пока клиент ожидал ответа, по клиентскому времени успели наступить новые сутки, однако известно, что между отправкой клиентом запроса и получением ответа от сервера прошло менее 24 часов.

Программа получает на вход три временные метки A, B, C. Каждая временная метка состоит из трёх целых чисел: количества часов, количества минут, количества секунд. То есть первые три строки входных данных содержат числа Ah, Am, As– часы, минуты, секунды момента A по клиентскому времени. Следующие три строки содержат числа Bh, Bm, Bs– часы, минуты, секунды момента B по времени сервера. Следующие три строки содержат числа Сh, Сm, Сs– часы, минуты, секунды момента С по времени клиента.

Программа должна вывести три целых числа: часы, минуты, секунды вычисленного точного времени, которое должен установить себе клиент.

Пример входных и выходных данных
Ввод Вывод Примечание
15

10

18

9

45

15

1

40

18

10

5

 

Клиент отправил запрос в 15:01:00 по своим часам, сервер получил запрос в 18:09:45 по своим часам. Клиент получил ответ в 15:01:40, в этот момент точное время будет 18:10:05.

 

Система оценивания

Решение, правильно работающее только для случаев, когда все три входных времени и ответ на задачу принадлежат одним суткам, будет оцениваться в 6 баллов.

Решение:

def read_time():
 s = [int(input()) for i in range(3)]
 return int(s[0]) * 3600 + int(s[1]) * 60 + int(s[2])

a = read_time()
b = read_time()
c = read_time()
DAY = 24 * 60 * 60
diff = (c + DAY - a) % DAY
ans = b + (diff + 1) // 2
ans %= DAY
h = ans // 3600
m = ans % 3600 // 60
s = ans % 60
print(h, m, s)

Содержание ↑

Урок информатики и ИКТ по теме «Измерение объема информации». 8-й класс

Цели урока:

  • Обобщение и систематизация знаний по теме: “Измерение объёма информации”.
  • Формирование практических навыков нахождения количества информации, используя алфавитный подход к измерению информации.

Задачи урока:

Учебная:

  • Обобщение и систематизация знаний.

Развивающая:

  • Развитие познавательного интереса, речи и внимания учащихся, умения сопоставлять, анализировать, делать выводы.
  • Формирование информационной компетентности.

Воспитательная:

  • Воспитание у учащихся интереса к предмету, доброжелательности, умения работать в коллективе.

Тип урока: комбинированный.

Форма урока: 1 часть урока – фронтальная, 2 часть урока – индивидуальная.

Методы и приёмы работы: словесный, наглядный, практический, частично-поисковый.

Оборудование:

  • компьютерный класс, с локальной сетью;
  • операционная система Windows XP, пакет Microsoft Office;
  • проектор и интерактивная доска.

Дидактический материал:

  • Презентация.ppt;
  • Информатика и Икт: рабочая тетрадь для 8 класса/ Л.Л. Босова, А.Ю. Босова. – 2-е изд., испр.-М.:БИНОМ.Лаборатория знаний, 2011.
  • Практические задания для закрепления материала: Приложение1.xls, Приложение2.xls.

Литература:

— Информатика и Икт: учебник для 8 класса/ Л.Л. Босова, А.Ю. Босова. – 2-е изд., испр.-М.:БИНОМ.Лаборатория знаний, 2011.

Требования к знаниям и умениям учащихся:

До урока:

  • Знать суть алфавитного подхода к измерению информации;
  • Знать формулу, связывающую информационный вес символа и мощность алфавита;
  • Знать формулу, по которой вычисляется информационный объем сообщения;
  • Знать единицы измерения информации.

После урока:

  • Уметь решать задачи с помощью алфавитного подхода к измерению информации;
  • Уметь переводить величины из одной единицы измерения в другую.

План урока

Этапы урока Мин.
1. Организационный момент 2
2. Актуализация знаний 10
3. Коллективное решение задач 10
4. Самостоятельное решение задачи 5
5. Закрепление, практическая работа на компьютере 15
6. Подведение итогов урока, запись дом.задания 3

Ход урока

1. Организационный момент.

Учитель: Здравствуйте ребята! Садитесь. Кто сегодня отсутствует?

Ученики: (отвечают и настраиваются на работу)

2. Актуализация знаний.

Учитель: На прошлом уроке мы с вами говорили о том, что в любом сообщении, которое мы получили, содержится какое-то количество информации. Узнали, что существует алфавитный подход к определению информационного объема сообщения, представленного на некотором языке, независимо от его содержания. Поговорили о том, что количество информации в сообщении зависит от количества символов в этом сообщении и от информационного веса символа, а информационный вес символа зависит от мощности алфавита, при помощи которого составлено это сообщение.

Сегодня на уроке мы продолжим работу по этой теме и отработаем навыки решения задач на измерения количества информации при алфавитном подходе.

Но прежде чем мы начнем решение задач, давайте повторим основные определения и формулы, которые нам будут необходимы сегодня. Каждый из вас должен будет ответить на вопрос, номер которого он выберет сам.

Ученики: выбирают номер вопроса слайд 1 и отвечают на него. Если учащийся не может ответить на вопрос, то ему помогают другие учащиеся. Данный вариант опроса позволяет быстро проверить знание учащихся по пройденному материалу. 9 вопрос “Кот в мешке”, здесь вопрос скрыт, это может быть как легкий вопрос, так и сложный. Ученик может оставить этот вопрос себе и отвечать на него, в случае правильного ответа получает 5 за урок, в случае неправильного – 2. Или отдать однокласснику, тот в свою очередь может получить, как 5 за урок, так и 2. Эта методика позволяет проверить сплоченность коллектива, ответственность, смелость и решимость ученика, которому достался вопрос.

Вопросы (слайд 2-13):

  1. Какая формула связывает информационный вес символа и мощность алфавита?
  2. По какой формуле можно вычислить информационный объем сообщения?
  3. Что означают величины в формулах I, N, i, K.
  4. Что такое алфавит и мощность алфавита?
  5. Назовите единицы измерения информации?
  6. К — эта величина означает…
  7. I — эта величина означает…
  8. Назовите единицы измерения информации от байта до Пбайт…
  9. Вопрос “Кот в мешке”: Сколько в одном байте бит?
  10. Найдите ошибку “Байт, Кбайт, Мбайт, Гбайт, Пбайт, Тбайт”.
  11. Если мощность алфавита равна 8, то чему будет равен информационный вес символа?
  12. Если количество символов в сообщении равно 10, а информационный вес символа равен 3 битам, то чему будет равен информационный объем всего сообщения?

Решение задач

Учитель: Итак, мы повторили с вами формулы, величины, единицы измерения информации. Мы продолжаем тему “Измерение информации” и сегодня решим несколько задач на определение количества информации.

Ученики: Запись даты и темы в тетрадях

Учитель: Решим задачу №1 (Зачитывается формулировка задачи слайд 14). Кто желает попробовать решить эту задачу? (выходит ученик). Решение данной задачи совместная работа с учащимися класса. Каждый шаг в решении задачи проговаривается. Отрабатываются навыки перевода из одной единицы измерения информации.

Задача 1.

Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Дано:

N=64 символа

К=20 символов

Решение:

I=K*i, i-?

N=2i? 64=2i? i = 6 бит

I=20* 6=120 бит 8=15 байт

I-? Ответ: Информационный объем сообщения равен 15 байт

Учитель: Решим задачу №2 (Зачитывается формулировка задачи слайд 14). Кто желает попробовать решить эту задачу? (выходит ученик). Решение данной задачи совместная работа с учащимися класса. Каждый шаг в решении задачи проговаривается. Отрабатываются навыки перевода из одной единицы измерения информации.

Задача 2.

Информационное сообщение объёмом 4 Кбайт содержит 4096 символов. Сколько символов содержит алфавит этого сообщения?

Дано:

I=4 Кбайт

К=4096 символов

Решение:

N=2i, i-?

I=K*i i=I/K

i=(4*1024*8)/4096=8 бит

N=28=256

N-? Ответ: 256 символов содержит алфавит

Учитель: Задачу №3 попробуйте решить самостоятельно в печатных рабочих тетрадях № 52. На решении задачи вам дается 3 минут. Время пошло.

Ученики: Ученики решают в тетрадях аналогичную задачу.

Учитель: Время закончилось. Какой ответ вы получили? Проверим решение данной задачи слайд 15.

Задача 3 (52).

Информационное сообщение объёмом 3 Кбайт содержит 6144 символов. Сколько символов содержит алфавит этого сообщения?

Дано:

I=3 Кбайт

К=6144 символов

Решение:

N=2i, i-?

I=K*i i=I/K

i=(3*1024*8)/6144=4 бит

N=24=16

N-? Ответ: 16 символов содержит алфавит

 Закрепление, практическая работа на компьютере.

Учитель: На главном компьютере, в папке Задания к уроку, в папке 8 Класс, в папке Измерение информации, находятся два файла Приложение1. xls, Приложение2.xls (//Teacher/Задания к уроку/8Класс/Измерение информации путь записан на доске) для четных компьютеров копируют файл Приложение2.xls, для нечетных — Приложение1.xls. В этом задании вам необходимо разгадать кроссворд по теме: “Информация и информационные процессы”. Что странного в этом кроссворде? Кроссворд проецируется на экран.

Ученики: Нет вопросов.

Учитель: Правильно. Чтобы появились вопросы, необходимо в листе “Вопросы” перевести величину из одной единицы измерения информации в другую. Если вы переводите правильно, то появляется вопрос в кроссворде. Вам надо открыть все вопросы, для того чтобы разгадать кроссворд и получить отметку за урок. Время на работу у вас 15 минут. Время пошло.

Ученики: Садятся за свои компьютеры, копирую файл в свою именную папку и приступают к работе.

Во время практической работы учитель следит за тем, у каких учеников возникают затруднения и по какой теме, консультирует по этим вопросам. Данная работа позволяет проверить и отработать у учащихся навыки перевода величин из одной единицы измерения информации в другую. А так же проверить знания теоретического материала по данной теме.

Учитель: Время закончилось. Давайте посмотрим, как вы справились с работой. Какие оценки выставил вам компьютер. Если вы безошибочно ответили на все вопросы, то это оценка “Молодец! Отлично)” — 5, при наличии одной ошибки или двух недочетов “Хорошо! Но можно было и подумать)” — 4, при наличии двух ошибок или более двух недочетов “Удовлетворительно(” — 3, больше двух и более ошибок “Очень плохо((” — 2. Выставляются отметки в журнал.

Ученики: выставляют отметки в дневник.

При наличии плохих отметок за урок, учитель дает рекомендации ученикам к следующему уроку подготовиться по данной теме и закрыть плохие отметки.

Подведение итогов урока, запись домашнего задания.

Учитель: Какие цели в начали урока, мы перед собой поставили? Что нового узнали? В чем возникли у вас затруднения? Какой материал не вызвал у вас затруднений.

Ученики: отвечают.

Учитель: При работе над домашним заданием, вы еще раз повторить основные формулы, необходимые при нахождении количества информации, а так же еще раз повторите алгоритм перевода из одной единицы измерения информации в другую.

Ученики: записывают домашнее задание в дневник параграф 1.4, стр.30 № 8,9,10.

Ответы к практическому заданию на компьютере.

Вариант 1

Вариант 2

Задачи на логику (8 класс, информатика)

Задача 1. Каждый из 35 шестиклассников является читателем, по крайней мере, одной из двух библиотек: школьной  и районной. Из них 25 человек берут книги в школьной библиотеке, 20 – в районной.  Сколько шестиклассников: 1. Являются читателями обеих библиотек; 2. Не являются читателями районной библиотеки; 3. Не являются читателями школьной библиотеки;  4. Являются читателями только районной библиотеки; 5. Являются читателями только школьной библиотеки? Решение. 1. 20 + 25 – 35 = 10 (человек) – являются читателями обеих библиотек. На схеме это  общая часть кругов. Мы определили единственную неизвестную нам величину. Теперь,  глядя на схему, легко даем ответы на поставленные вопросы. 2. 35 – 20 = 15 (человек) – не являются читателями районной библиотеки. (На схеме левая часть левого круга) 3. 35 – 25 = 10 (человек) – не являются читателями школьной библиотеки. (На схеме правая часть правого круга) 4. 35 – 25 = 10 (человек) – являются читателями только районной библиотеки. (На схеме правая часть правого круга) 5.  35 – 20 = 15 (человек) – являются читателями только школьной библиотеки. (На схеме левая часть левого круга). Очевидно, что 2 и 5, а также 3 и 4 – равнозначны и ответы на них совпадают. Задача 3. В  трёх  седьмых  классах 70 ребят. Из  них  27  занимаются  в  драмкружке,  32  поют  в хоре,  22   увлекаются  спортом.  В  драмкружке  10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8   спортсменов;  3  спортсмена  посещают  и  драмкружок  и  хор. Сколько  ребят  не  поют  в  хоре,  не  увлекаются спортом и не занимаются в драмкружке? Сколько ребят заняты только спортом? Решение. Пусть  Д – драмкружок,  Х – хор,  С – спорт. Тогда  в круге Д – 27 ребят,  в круге Х – 32 человека,  в круге С – 22 ученика. Те 10 ребят из драмкружка, которые поют в хоре, окажутся в  общей части кругов Д и X. Трое из них ещё и спортсмены, они  окажутся в общей части всех трёх кругов. Остальные семеро спортом не увлекаются. Аналогично, 8 – 3 = 5   спортсменов, не поющих в хоре и  6 – 3 = 3, не посещающих драмкружок. Легко видеть, что 5 + 3 + 3 = 11 спортсменов посещают хор или драмкружок, 22 – (5 + 3 + 3) = 11 занимаются только спортом;  70 – (11 + 12 + 19 + 7 + 3 + 3 + 5) = 10 – не поют в хоре, не занимаются в драмкружке, не увлекаются спортом. Ответ: 10 человек и 11 человек. В классе 30 человек. 20 из них каждый день пользуются метро, 15 – автобусом, 23 – троллейбусом, 10 – и  метро, и троллейбусом, 12 – и метро, и автобусом, 9 – и троллейбусом, и автобусом. Сколько человек  ежедневно пользуется всеми тремя видами транспорта? Решение. 1 способ. Для решения опять воспользуемся кругами Эйлера. Пусть х  человекпользуется всеми тремя видами транспорта. Тогда пользуются только метро и троллейбусом – (10 – х) человек,  только автобусом и троллейбусом – (9 – х) человек,  только метро и автобусом – (12 – х) человек. Найдем, сколько человек пользуется одним только метро:  20 – (12 – х) – (10 – х) – х = х – 2. Аналогично получаем: х – 6 – только автобусом и х + 4 – только троллейбусом, так  как всего 30 человек, составляем уравнение:  х + (12 – х) + (9 – х) + (10 – х) + (х + 4) + (х – 2) + (х – 6) = 30,  отсюда х = 3. решить задачу другим – 9 + х = 30, 27 + х = 30, х = учеников, которые транспорта и из полученной кто пользуется двумя или в сумму 2­3 раза. Таким всех учеников в классе. Ответ. 3 человека тремя видами 2 способ. А можно эту задачу  способом: 20 + 15 + 23 – 10 – 12  3. Здесь сложили количество  пользуются хотя бы одним видом суммы вычли количество тех,  тремя видами и, поэтому, вошли  образом, получили количество  ежедневно пользуются всеми  транспорта.

Информатика и ИКТ. Задачник-практикум. В 2т. ТОМ 1. Под ред. Семакина И.Г., Хеннера Е.К.

ТОМ 1.
Задачник-практикум входит в состав учебно-методических комплектов «Информатика и ИКТ» для 8-9 и 10-11 классов. В практикум включены разноуровневые задания, которые подобраны в соответствии с темами основного курса информатики и ИКТ (8-9 классы) и курса для старшей школы (базовый уровень).

Том 1.
Введение 5
Раздел 1. Представление информации 7
1.1. Информация и языки 7
1.2. Кодирование информации 10
1. 3. Измерение информации 15
1.4. Количество информации и вероятность 23
1.5. Представление числовой информации 28
1.5.1. Системы счисления 28
1.5.2. Перевод десятичных чисел в другие системы счисления . . 33
1.5.3. Системы счисления, используемые в компьютере (с основанием 2п) 36
1.5.4. Арифметика в позиционных системах счисления 40
1.6. Логическая информация и основы логики 44
1.6.1. Высказывания 44
1.6.2. Логические величины, операции, выражения 46
1.6.3. Логические схемы и логические выражения 50
1.6.4. Импликация и эквивалентность 54
1.6.5. Преобразование логических выражений 56
Раздел 2. Информационные модели: системы и структуры данных 61
2.1. Введение в системологию 61
2.1.1. Понятие «система»; системный эффект 61
2.1.2. Среда. Вход и выход системы. «Черный ящик» 63
2.1.3. Состав и структура системы. Информационная модель . .. 67
2.1.4. Систематизация 72
2.2. Информационные модели на графах 79
2.2.1. Основные понятия: теоретическое введение 79
2.2.2. Классификация и наследование 88
2.2.3. Блок-схемы 94
2.3. Табличные информационные модели 97
2.3.1. Основные понятия 97
2.3.2. Таблицы типа «объекты—свойства» 102
2.3.3. Таблицы типа «объекты—объекты» 105
2.3.4. Более сложные типы таблиц 109
2.3.5. Вычислительные таблицы 118
Раздел 3. Компьютерная информация и архитектура ЭВМ 128
3.1. Представление информации в компьютере 128
3.1.1. Структура внутренней памяти 128
3.1.2. Структура дисков; файлы и каталоги 130
3.1.3. Представление символьной информации 135
3.1.4. Представление числовой информации 139
3.1.4.1. Целые числа 139
Работа № 1 141
3.1.4.2. Вещественные числа 142
Работа № 2 146
3.1.5. Представление графической информации 147
3. 1.5.1. Растровое представление 147
3.1.5.2. Векторное представление 154
3.1.6. Звук в памяти компьютера 160
3.2. Архитектура ЭВМ (на моделях учебных компьютеров) 163
3.2.1. Формат машинной команды 164
3.2.2. Язык машинных команд 167
3.2.3. Машинно-ориентированные языки (Автокод — Ассемблер) 177
Раздел 4. Алгоритмизация и программирование 183
4.1. Алгоритм и его свойства 183
4.2. Алгоритмы управления учебными исполнителями …. 185
4.2.1. Машина Поста 185
4.2.2. «Умный мячик» 190
4.2.3. Графический исполнитель (ГРИС) 196
4.2.4. ЛОГО — Черепашка 200
4.3. Алгоритмы работы с величинами 209
4.4. Программирование на языках высокого уровня 218
4.4.1. Программирование линейных алгоритмов 218
4.4.2. Программирование ветвящихся алгоритмов 233
4.4.3. Программирование циклических алгоритмов 245
4.4.4. Работа с массивами 260
4. 4.5. Подпрограммы 280
4.4.6.

Amazon.com: 101 решенная задача-головоломка по программированию: старшеклассники и старшеклассники Присоединяйтесь к нам, чтобы выиграть олимпиаду по информатике Электронная книга: Venkateswarlu, NB: Kindle Store

Олимпиада по информатике, IOI — одна из пяти международных научных олимпиад. Основная цель IOI — стимулировать интерес к информатике (компьютерным наукам) и информационным технологиям. Еще одна важная цель – собрать исключительно талантливых учеников из разных стран и дать им возможность поделиться научным и культурным опытом.IOI проводится ежегодно в одной из стран-участниц и одной из них. Каждая страна-участница обычно отправляет делегацию из четырех участников и двух сопровождающих взрослых.

Эта книга содержит 101 избранный вопрос, которые задаются на различных всемирных соревнованиях по программированию, организованных для старшеклассников, чтобы сориентировать их в IOI. Мы предоставили решения вместе с пояснениями, включая рабочие снимки программы. За исключением нескольких примеров, для большинства выбранных задач требуется специальная логика, а не логика, основанная на структурах данных.Более того, начальные примеры менее требовательны по сравнению с последними примерами, так что начинающий студент может постепенно улучшать свои логические и программные способности, решая поставленные задачи. Однако мы не утверждаем, что наши решения всегда оптимальны. Кроме того, на самом деле мы не хотим утверждать, что одна проблема сложна, а другая проста, поскольку используемая нами специальная логика может быть хуже других. Тем не менее, мы тщательно протестировали каждую проблему с помощью различных тестовых случаев.

Мы включили достаточно объяснений, чтобы читатели поняли логику adhoc, которую мы использовали при решении некоторых задач. Мы включили цифры везде, где это было необходимо, чтобы объяснить логику, которую мы использовали при решении задач. Некоторые вопросы требуют создания комбинаций набора элементов, манипуляций со строками, сортировки. Мы подробно рассказали о методе, который использовали для решения задачи, чтобы читатели могли легко решать подобные задачи.В конце мы дали список полезных книг и веб-сайтов в разделе ссылок.

Решения даны на языке программирования Си. Мы предполагаем, что читатель знаком с элементами языка программирования C. Тем людям, которые чувствуют, что знают только язык и еще не развили свои логические навыки, мы советуем прочитать книги по программированию на C, приведенные в списке литературы. Все решения тестируются и разрабатываются в интегрированной среде разработки (IDE) Dev C++ Bloodshed (www.bloodshed.net), которая использует набор инструментов компилятора GCC.

Мы считаем, что эта книга будет очень полезна для тех студентов, которые готовятся к IOI, ICPC, Challenge24, Microsoft Cup, Aspirations of Infosys и другим. Кроме того, мы считаем, что это будет очень полезно для тестов набора в кампусе (CRT), проводимых Google, Face Book, Amazon, Microsoft, Wipro, Yahoo и т. д.
— Автор

CSCI B100, INFO I101 — Решение проблем с использованием компьютеров, Введение в информатику, IU South Bend

Предварительное расписание

Неделя

Дата

Испытания

Срок назначения

(см. полотно)

Обсуждение лекций

Связанные файлы

1 21.08.    

Академический календарь IU South Bend

Электронная почта IU

— Рекомендованный учебник (ссылка)

— Учебный план и обзор курса

— Тест на компьютерную грамотность

— Исследование компьютерной грамотности

— Блок 1

— Учебный план (pdf)

— Викторина (pdf)

— Обзор (pdf)

— Блок 1 (pptx)

  23.08.    

Чтение

— Модуль 1 (Введение в компьютеры)

Лекция

— Блок 1

 
  24. 08    

Чтение

— Модуль 2 (Введение в разработку программного обеспечения)

Лекция

— Блок 1

— Блок 2

Модуль 2 (pptx)
2 8/28    

Чтение

— Модуль 2 (Введение в разработку программного обеспечения)

Лекция

— Блок 2

 
  30.08    

Лекция

— Блок 2

— Модуль 2 Решение проблем

Раздел 2 Решение проблем (pptx)
  31 августа   Лаборатория 1

Лаборатория решения проблем

— Блок 2

 
3 9/4     Праздник Дня труда Нет занятий – кампус закрыт  
  9/6 Викторина 1 (материалы до 31 августа)  

Решение проблем

— Блок 2 (состояние)

 
  9/7  

Аппаратное обеспечение 1

Лаборатория 2

Лаборатория решения проблем

— Блок 2

 
4 9/11    

Решение проблем

— Блок 2 (накопление)

 
  13 сентября    

Домашнее задание 1 Лист решения и обсуждение

 

Решение проблем

 – Блок 2 (бутик во время, группировка (цвета, города) во время/если, самый высокий/самый низкий)

 
  14 сентября  

МО 2

Лаборатория 3

Лаборатория решения проблем

— Блок 2

 
       

16 сентября: Отчет о посещаемости. Преподаватели должны обновить данные о посещаемости своих студентов в IU Flags до 23:59.м.

17 сентября: прекращение возврата 25% — используйте eDrop. Студенты могут отказаться от занятий через One.IU до 11:59 крайнего срока.

 
5 18 сентября    

Обзор экзамена 1

Домашнее задание 3 обсуждение

Решение проблем

 
  9/20 Экзамен 1 (Единицы 1 и 2) МО 3

ЭКЗАМЕН 1 (Блок 1 и 2)

— Не берите 2 карандаша и ластики

— Принесите удостоверение личности с фотографией

 
  21 сентября   Лаборатория 4    
6 25 сентября    

Экзамен 1 Обсуждение решения

Введение в подпроцедуры

 
  27 сентября     Блок 3 — ввод-вывод Visual Basic, операции, консоль, графический интерфейс Блок 3 (pptx)
  28 сентября

 

МО 4

Лаборатория 5

   
        1 октября: Крайний срок подачи заявления на выпускной — май, август 2018 г.  
7 10/2     Блок 3 — ввод-вывод Visual Basic, операции, консоль, графический интерфейс Раздел 3 Решение проблем (pptx)
  4/10     Блок 3 — графический интерфейс  
  5/10  

HW 5

Лаборатория 6

Блок 3 — Лаборатория графического интерфейса пользователя BMI  
8 9/10    

Модуль 5 — VB — Если, логическое значение, выберите

Модуль 6 – В.Б. – Делать, пока

Блок 5 (pptx)

Блок 6 (pptx)

  11. 10.     Модуль 6 — VB — Зацикливать пока, делать до, зацикливать до  
  12/10 Викторина 2 (Блок 3)

МО 6

Лаборатория 7

   
        Промежуточные оценки: Расчет промежуточных оценок не требуется.Преподаватели должны обновить посещаемость и статус академической успеваемости их ученики во флагах IU к 23:59.  
9 16.10.     Осенние каникулы  
  18.10.

 

 

Посмотреть видеолекцию (ссылка)

Путешествие инструктора

 
  19. 10.   Лаборатория 8

Еженедельная лаборатория в 13:00

Путешествие инструктора

 
10 23.10     Модуль 6 — VB — Решение проблем Модуль 6 Решение задач (pptx)
  25.10     Модуль 6 — VB — Решение проблем  
  26.10  

HW 7

Лаборатория 9

   
11 30.10     Модуль 6 — VB — Решение проблем  
  11/1 Экзамен 2  

ЭКЗАМЕН 2 (Блок 3, 5 и 6)

— Принесите 2 карандаша и ластик

 
  11/2   Лаборатория 10    
12 6 ноября

 

 

— Блок 7 Массивы

Блок 7 (pptx)
  8. 11

 

  — Блок 7 Массивы  
  9.11  

HW 8

Лаборатория 11

— Блок 7 Массивы  
13 13/11

 

  — Блок 7 Массивы  
  15/11     — Блок 8 файлов Блок 8 (pptx)
  16.11 Тест 3 (массивы)

МО 9

 

— Блок 8 файлов  
14 20.11.   Лаборатория 12    
  22. 11     Перерыв на День Благодарения.Класса нет.  
  23.11     Перерыв на День Благодарения. Класса нет.  
15 27.11

 

  — Разработка программ (VB, файлы, массивы)  
  29.11     — Разработка программ (VB, файлы, массивы)  
  30.11   HW 10 и фаза проекта 1 — Фаза проекта 2  
16 12/4     — Фаза проекта 2  
  6/12   Фаза проекта 2

— Фаза проекта 2

— Обзор курса

 
  7 декабря Лабораторный экзамен   — VB (все блоки, кроме блока 8)  
17 13/12 Заключительный экзамен в 13:00   — Блоки 8, 7, 6, 5 и 3  

Журнал прикладной математики, статистики и информатики

Главный редактор:
Квасничка, Владимир
Университет им. Кирилла и Мефодия в Трнаве, Словацкая Республика

Ответственные редакторы:
Диргова Луптакова Ивета,
Университет С.С. Кирилла и Мефодия в Трнаве, Словацкая Республика

Бено Мирослав,
Университет СС. Кирилла и Мефодия в Трнаве, Словацкая Республика

Редакция:
Диргова Луптакова Ивета,
Университет СС. Кирилл и Мефодий в Трнава, Словацкая Республика

Джурина Юзеф,
Технический университет Кошице, Словацкая Республика

Ďurikovič Roman,
Komensky University в Братиславе, Словацкая Республика

Fečkan Michal,
Komensky University in Bratislava,
Komensky University в г. Фельцман Йиржи,
Ян Евангелиста Пуркине Университет Усти-над-Лабем, Чехия

Габришка Дарья,
Университет С.С.Кирилла и Мефодия, Словацкая Республика

Hamedani Gholamhossein G.,
Университет Маркетт, США

He Ji-Huan,
Университет Сучжоу, Китай

Hosťovecký Marián,
Университет СС. Кирилла и Мефодия в Трнаве, Словацкая Республика  

Хурадж Ладислав,
Университет С.С. Кирилла и Мефодия в Трнаве, Словацкая Республика

Янига Иван,
Словацкий технический университет в Братиславе, Словацкая Республика

Коколианнаки Г.Хриси,
Университет Патры, Греция

Неруда Роман,
Карлов университет в Праге, Чехия

Ölvecký Мирослав,
Университет С.С. Кирилла и Мефодия в Трнаве, Словацкая Республика

Попичаль-Йиржи,
Университет С.С. Кирилла и Мефодия в Трнаве, Словацкая Республика

Potocký Rastislav,
Komensky University в Братиславе, Словацкая Республика

Rachůnková Irena,
Palacky University of Olomouc, Чешская Республика

Sekanina Lukáš,
Brno University of Technology,

Sekanina Lukáš,
Brno University of Technology, Сукумар,
Национальный технологический институт в Тамилнаду, Индия

Щербаков Максим,
Волгоградский государственный технический университет, Россия

Симон Марек,
Университет С. С.Кирилла и Мефодия, Словацкая Республика

Сривастава Хари М.,
Университет Виктории, Канада

Stehlík Milan,
Университет Иоганна Кеплера в Линце, Австрия

Sumec Jozef,
Словацкий технологический университет в Братиславе, Словацкая Республика

3

3
Университет Йоханнеса Кеплера в Линце Taneja Inder jet,
Universadade Federal de Santa Catarina, Бразилия

VRťO IMRICH,

Словацкая академия наук, Словацкая Республика

ZDRáhal Tomáš,
Jan EvangeLista Purkyňe Университет ústí Nad Labem, Чехия

Контакты
Jamsi @укм.sk

Издательство
De Gruyter Польша
Богумила Зуга ул.
01-811 Варшава, Польша

◾ Климатическая информатика | КЛЭР МОНТЕЛЕОНИ, ГЭВИН А. ШМИДТ, ФРЭНСИС A

Последствия нынешнего и потенциального будущего изменения климата будут одной из самых важных научных и социальных проблем в мире. 21-го века. Учитывая наблюдаемые изменения температуры, морского льда и морских уровне, улучшение нашего понимания климатической системы является международным приоритетом. система характеризуется сложными явлениями, которые несовершенно наблюдаются и еще более несовершенно моделируются. Но с постоянно растущее количество климатических данных со спутников и окружающей среды

4.5 Анализ климатических данных: проблемы и подходы 91 4.5.1 Резкие изменения 91 4.5.2 Климатические сети 94 4.5.3 Прогнозное моделирование: средние процессы и экстремальные явления 96

4.6 Сезонное прогнозирование климата 97 4.6.1 Что лежит в основе сезонного прогнозирования? 97 4.6.2 Проблемы с данными 99 4.6.3 Идентификация предсказуемых величин 99 4.6.4 Наилучшее использование данных МОЦ 100

4.7 Экстремальные климатические явления, неопределенность и воздействия 101 4.7.1 Проблема изменения климата 101 4.7.2 Наука об экстремальных климатических явлениях 101 4.7.3 Наука о воздействии климата 102

4.8 Реконструкция прошлого климата 103 4.8.1 Задача реконструкции глобальной температуры 104 4.8.2 Эксперименты с псевдопрокси 107 4.8.3 Реконструкция климата и будущее 108

4. 9 Приложения к проблемам в полярных регионах 110 4.10 На пути к набору инструментов климатической информатики 112 4.11 Проблемы с данными и возможности в области климатической информатики 114

4.11.1 Проблемы со сравнением между классами 114 4.11.2 Сложность климатической системы 116 4.11.3 Задача: воспроизводимый анализ климатических данных на основе облачных вычислений

116 4.11.3.1 Шкала данных 117 4.11.3.2 Графики воспроизводимости и происхождения 117

4.12 Заключение 118 Благодарности 118 Каталожные номера 119

датчиков, начальная величина данных и вывод климатической модели чтобы сокрушить относительно простые инструменты, используемые в настоящее время для их анализа.Поэтому вычислительный подход будет незаменим для этих задачи анализа. В этой главе представлена ​​новая исследовательская дисциплина климатическая информатика: сотрудничество между учеными-климатологами и исследователи машинного обучения, чтобы преодолеть этот разрыв между данными и понимание. Мы надеемся, что изучение климатической информатики ускорит поиск ответов на насущные вопросы климатологии.

Улучшение паллиативной помощи с помощью глубокого обучения | BMC Medical Informatics and Decision Making

Мы выдвигаем гипотезу, как описано ранее, что прогнозирование смертности является разумным приближением к прогнозированию потребностей пациентов в паллиативной помощи, хотя паллиативная помощь применима более широко, чем уход в конце жизни, включая пациентов, все еще проходящих болезненное лечебное лечение. (например, трансплантация костного мозга и т. д.).Мы подходим к проблеме прогнозирования смертности с точки зрения бригады паллиативной помощи, будучи в значительной степени независимы от типа заболевания, стадии заболевания, тяжести госпитализации (ОИТ по сравнению с не ОИТ), возраста и т. д. Масштаб данных ( с точки зрения количества пациентов) позволяет нам использовать модель глубокого обучения, которая рассматривает каждого пациента в EHR (с достаточно длинной историей), не ограничивая наш анализ какой-либо конкретной подгруппой или когортой. Мы сформулируем прокси-постановку проблемы (вместо определения паллиативных потребностей) следующим образом:

Учитывая пациента и дату, спрогнозируйте смертность этого пациента в течение 12 месяцев с этой даты, используя данные EHR этого пациента за предыдущий год.

Этот фрейм можно рассматривать как проблему бинарной классификации, и для ее решения мы применяем подход к обучению с учителем, используя глубокое обучение. Помимо создания модели, которая хорошо справляется с вышеуказанной проблемой, нас также отдельно интересует ее эффективность для конкретной подгруппы пациентов: пациентов, которые в настоящее время госпитализированы. Это связано с тем, что персоналу паллиативной помощи намного легче вмешиваться в работу госпитализированных пациентов. Эта постановка задачи и моделирование были ранее описаны в [37].

Источник данных

STRIDE (Stanford Translational Research Integrated Database Environment) [38] — это хранилище клинических данных, поддерживающее клинические и трансляционные исследования в Стэнфордском университете. Данные доступны в виде реляционной базы данных, из которой мы извлекаем признаки и создаем обучающий набор данных с помощью SQL-запросов. Моментальный снимок STRIDE (версия 6), использованный в нашей работе, включает данные EHR примерно 2 миллионов взрослых и детей, лечившихся в Стэнфордской больнице или в детской больнице Люсиль Паккард в период с 1990 по 2014 год.

Создание набора данных для контролируемого обучения

При создании набора данных для контролируемого обучения мы определяем следующие понятия:

  • Положительные случаи : Пациенты , дата смерти которых зарегистрирована в EHR , считаются положительными случаями .

  • Отрицательные случаи : Пациенты , у которых нет зарегистрированной даты смерти в EHR , считаются отрицательными случаями .

  • Дата прогноза : Момент времени, характерный для каждого пациента, который делит временную шкалу истории болезни пациента на виртуальные будущие и прошлые события, считается датой прогноза этого пациента .

Данные из виртуального прошлого каждого пациента используются для расчета вероятности его смерти через 3–12 месяцев в будущем. Обратите внимание, что мы должны соблюдать осторожность при определении даты предсказания , чтобы не нарушать ограничения здравого смысла (описанные ниже), которые могут сделать метки недействительными.Мы включаем только пациентов, для которых можно найти дату прогноза , которая удовлетворяет этим ограничениям.

Положительные случаи

Паллиативная помощь наиболее эффективна, если направление к врачу поступает за 3–12 месяцев до смерти. Подготовительное время, необходимое для начала паллиативной помощи, обычно слишком поздно для пациентов, которые скончались в течение трех месяцев. С другой стороны, время опережения более 12 месяцев также нежелательно, потому что делать точные прогнозы на такой длительный период времени сложно, и, что более важно, паллиативная помощь представляет собой ограниченный ресурс, который лучше всего сосредоточить на более неотложных потребностях. Ограничения, которым должна соответствовать дата предсказания для положительных случаев, следующие:

  • Дата предсказания должна быть зарегистрированной датой встречи.

  • Дата предсказания должна быть не менее чем за 3 месяца до даты смерти (иначе смерть слишком близка).

  • Дата предсказания может быть максимум за 12 месяцев до даты смерти (иначе до смерти слишком далеко).

  • Дата прогноза должна быть не менее чем через 12 месяцев после даты первого контакта (в противном случае у пациента не будет достаточного количества анамнеза, чтобы основывать прогноз).

  • Госпитализация в стационаре предпочтительнее других типов госпитализации для прогнозируемой даты , если она соответствует предыдущим ограничениям (поскольку с ними легче начать разговор о паллиативной помощи).

  • Дата предсказания должна быть самой ранней среди возможных дат-кандидатов с учетом предыдущих ограничений.

Случаи с отрицательным результатом

Случаи с отрицательным результатом (пациенты без даты смерти) — это пациенты, прожившие не менее 12 месяцев с даты прогноза . Их дата предсказания выбрана таким образом, чтобы удовлетворять следующим ограничениям:

  • Дата предсказания должна быть зарегистрированной датой встречи.

  • Дата прогноза должна быть как минимум за 12 месяцев до даты последней встречи (во избежание двусмысленности смерти после даты моментального снимка EHR).

  • Дата предсказания должна быть как минимум через 12 месяцев после даты первого столкновения (в противном случае недостаточно истории).

  • Госпитализация в стационаре предпочтительнее других типов встреч для даты прогноза , если они соответствуют предыдущим ограничениям (чтобы служить контролем для допущенных положительных случаев).

  • Дата предсказания должна быть самой поздней среди возможных дат-кандидатов с учетом предыдущих ограничений.

Госпитализированные пациенты

Это пациенты, у которых дата прогноза выбрана на основе вышеперечисленных критериев и попадает в стационарную госпитализацию. Остальные пациенты (то есть пациенты, у которых прогнозируемая дата не попадает в диапазон во время госпитализации) считаются не госпитализированными.Обратите внимание, что не госпитализированные пациенты могли по-прежнему иметь другие зарегистрированные госпитализации в своей истории, просто их дата прогноза не попала ни в один из этих диапазонов. Кроме того, мы наблюдаем, что записи пациентов обычно обновляются последними диагностическими и физиологическими данными, такими как предварительные анализы, диагностика и т. д., в течение первых суток после поступления. Поэтому второй день приема обычно лучше подходит для более обоснованного прогноза. Основываясь на этом обосновании, для госпитализированных пациентов мы повторно корректируем их прогнозируемую дату , увеличивая ее на второй день госпитализации.

Как для положительных, так и для отрицательных случаев мы подвергаем цензуре все данные после их соответствующей даты прогноза . КМ-график цензорных длин показан на рис. 1, на котором показано разделение между двумя классами в 365 дней.

Рис. 1

Правая цензура длины показана как график выживаемости

Описание данных

Критерии включения привели к выбору в общей сложности 221 284 пациентов. В таблице 1 показана разбивка этих пациентов на основе включения и госпитализации. Обратите внимание, что госпитализированных пациентов остаются подмножеством включенных пациентов и не разделяются на непересекающиеся множества.

Таблица 1 Разбивка количества пациентов

Мы наблюдаем, что неудивительно, что распределение возраста на момент прогнозирования неравномерно между классами, и что положительный класс (умершие пациенты) смещен в сторону более старшего возраста (рис. 2) .

Рис. 2

Возраст пациентов на момент прогнозирования

Включенные пациенты случайным образом распределяются в примерном соотношении 8:1:1 на обучающую, проверочную и тестовую выборки, как показано в таблице 2.

Таблица 2 Разделение данных для моделирования

Распространенность смерти среди всех включенных пациентов составляет примерно 7%. Из всех включенных пациентов примерно 5% составляли госпитализированных пациентов (т. е. те, у которых дата прогноза была на второй день госпитализации). Среди госпитализированных пациентов подмножеств распространенность смерти немного выше, около 11%.

Извлечение признаков

Для каждого пациента мы определяем его окно наблюдения как 12 месяцев, предшествующих дате прогнозирования .В пределах окна наблюдения каждого пациента мы создаем признаки, используя диагностические и платежные коды МКБ9 (Международная классификация болезней 9-го пересмотра), коды процедур CPT (текущая процедурная терминология), коды рецептов RXCUI и встречи, обнаруженные в этот период.

Элементы создаются следующим образом. Мы разделили окна наблюдения каждого пациента на четыре среза наблюдения , указанные относительно даты прогнозирования (PD).Это делается для того, чтобы зафиксировать лонгитюдный характер данных. Точные точки разделения каждого среза в окне наблюдения показаны в таблице 3.

Таблица 3 Окно наблюдения и срезы

Таким образом, срез наблюдения 1 является самым последним, а срез наблюдения 4 — самым старым. Чтобы сделать больший акцент на недавних данных, ширина среза в более поздних срезах намеренно уменьшена по сравнению с более ранними. В каждом срезе наблюдения мы подсчитываем количество вхождений каждого кода в каждой категории кода (предписание, выставление счетов и т. д.).) в этом диапазоне. Количество каждого такого кода в срезе считается отдельной функцией.

Мы также включаем демографические данные пациента (возраст, пол, раса и этническая принадлежность) и следующую сводную статистику по каждому пациенту в окне наблюдения для каждой кодовой категории:

  • Количество уникальных кодов в категории.

  • Подсчет общего количества кодов в категории.

  • Максимальное количество кодов, назначаемых в любой день.

  • Минимальное количество кодов (отличных от нуля), назначаемых в любой день.

  • Диапазон количества кодов, назначаемых в день.

  • Среднее число кодов, назначенных за день.

  • Разница в количестве присвоенных кодов за день.

Все эти характеристики (т. е. количество кодов в каждом из четырех срезов наблюдения , сводная статистика по категориям в течение окна наблюдения и демографические данные) были объединены для формирования набора характеристик-кандидатов. Из этого набора мы удалили те признаки, которые встречаются у 100 или менее пациентов.В результате получился окончательный набор из 13 654 функций. Из 13 654 признаков каждый пациент в среднем имеет 74 ненулевых значения (со стандартным отклонением 62) и до 892 значений максимум. Общая матрица признаков разрежена примерно на 99,5%.

Алгоритм и обучение

Наша модель представляет собой полносвязную глубокую нейронную сеть (DNN) [39], имеющую входной слой (из 13 654 измерений), 18 скрытых слоев (по 512 измерений в каждом) и скалярный выходной слой. Мы используем логистическую функцию и логарифм потерь на выходном уровне для двоичной классификации (с метками 0/1) и используем функцию активации Scaled Exponential Linear Unit (SeLU) [40] на каждом уровне.Модель оптимизирована с помощью оптимизатора Adam [41] с размером мини-пакета из 128 примеров. Использовалась скорость обучения по умолчанию (0,001).

Промежуточные снимки весов моделей делались каждые 250 итераций мини-пакетов, и моментальный снимок, показавший наилучшие результаты в проверочном тесте, задним числом выбирался в качестве окончательной модели. Явная регуляризация не была сочтена необходимой. Конфигурация сети была достигнута путем расширенного поиска гиперпараметров по разной глубине сети (от 2 до 32) и функций активации ( tanh , ReLU и SeLU ).

Программное обеспечение реализовано с использованием языка программирования Python (версия 2.7), фреймворка PyTorch [42] и библиотеки scikit-learn (версия 0.17.1) [43]. Обучение проводилось на NVIDIA TitanX (12 ГБ ОЗУ) с CUDA версии 8.0.

Метрика оценки

Поскольку данные несбалансированы (с распространенностью 7%), точность может быть плохой оценочной метрикой [44]. В крайнем случае слепое предсказание класса большинства, даже не глядя на данные, может привести к высокой точности, хотя такой классификатор может быть бесполезен.Кривая ROC представляет собой компромисс между чувствительностью и специфичностью, а площадь под кривой (AUROC) обычно является более надежной метрикой по сравнению с точностью в несбалансированных задачах, но иногда она может вводить в заблуждение [45, 46]. В случаях использования, когда алгоритм используется для выявления представляющих интерес примеров на основе запроса из пула данных (например, «найди мне пациентов, находящихся на грани смерти») и принятия мер по ним, компромисс между точностью и полнотой более значим, чем компромисс между чувствительностью и специфичностью. Обычно это происходит потому, что действие связано с затратами, а точность (или PPV) информирует нас о том, насколько вероятно, что эти затраты приведут к полезности. Поэтому мы используем показатель средней точности (AP), также известный как кривая Area Under Precision-Recall (AUPRC) для выбора модели [47].

Reviews: Social History: Vol 8, No 3

RW Scribner, Ради простого народа – Популярная пропаганда немецкой Реформации (1981), xi+299 (Cambridge University Press, Cambridge Studies in Oral and Letterate Культура, 25 фунтов стерлингов.00).∗

Маргарет Спаффорд, Маленькие книги и приятные истории: популярная художественная литература и ее читатели в Англии семнадцатого века (1981), xxi+275 (Метуэн, 14,95 фунтов стерлингов).

З.Т. M. Frijhoff, La Société néerlandaise et ses gradués, 1575–1814 (1981), xvii+422 (APA-Holland University Press, Amsterdam, Hf 80). (Голландское общество и его выпускники, 1575–1814 гг.)

Иэн А. Кэмерон, Преступность и репрессии в Оверни и Гиене, 1720–1790 (1981), xvi+283 (издательство Кембриджского университета, 18 фунтов стерлингов.50).∗

Джеффри Бест, Война и общество в революционной Европе, 1770–1870 (1982), 336 (Fontana History of War and European Society; Leicester University Press, £12,00; Fontana Paperbacks, £2,95).

В. Г. Кирнан, Европейские империи от завоевания до краха, 1815–1960 (1982), 285 (Fontana History of War and European Society: Leicester University Press, £12,00, Fontana в мягкой обложке, £2,95).

Крейг Калхун, Вопрос о классовой борьбе, социальные основы народного радикализма во время промышленной революции (1982), xvi+321 (Бэзил Блэквелл, Оксфорд, 12 фунтов стерлингов.50).

Джеймс Эпштейн, Лев свободы: Фергус О’Коннор и чартистское движение, 1832–1842 (1982), 327 (Croom Helm, 14,95 фунтов стерлингов).

Дэвид Гудвей, Лондонский чартизм, 1838–1848 (1982), xviii+333 (издательство Кембриджского университета, 22,50 фунта стерлингов).

Х. Л. Даттон и Дж. Э. Кинг, « Десять процентов и не сдаваться». Престонская забастовка 1853–1854 (1981) 198 (издательство Кембриджского университета, Кембридж, 18,50 фунтов стерлингов).

Роджер Смит, Испытание по медицине: безумие и ответственность в викторианских испытаниях (1981), ix+238 (Edinburgh University Press, Эдинбург, 15 фунтов стерлингов.00)

Mark Finnane, Insanity and the Insane in Post-Famine Ireland (1981), 241 (Croom Helm, 13,95 фунтов стерлингов).

Р. Дж. Эванс и В. Р. Ли (редакторы), Немецкая семья. Очерки социальной истории семьи в Германии девятнадцатого и двадцатого веков (1981), 302 (Croom Helm, 13,95 фунтов стерлингов).

П.К. Эдвардс, Забастовки в Соединенных Штатах, 1881–1974 (1981), xvi+336 (Бэзил Блэквелл, 19,50 фунтов стерлингов).

Ричард Бессель и Э. Дж. Фейхтвангер (редакторы), Социальные изменения и политическое развитие в Веймарской Германии (1981), 297 (Croom Helm, 13 фунтов стерлингов. 95).

Дэвид Абрахам, Крах Веймарской республики: политическая экономия и кризис (1981), xvi + 366 (издательство Принстонского университета, Принстон, 16,70 фунтов стерлингов, 7 фунтов стерлингов в мягкой обложке).

Мартин Бросзат, Государство Гитлера. Основание и развитие внутренней структуры Третьего рейха (1981), xvii+378 (Longman, мягкая обложка £6,50).

Olive Banks, Faces of Feminism (1981), 285 (Мартин Робертсон, 5,50 фунтов стерлингов).

Дайан Кенкер, Московские рабочие и революция 1917 года (1981), xvi+ 420 (Princeton University Press, Princeton N.Дж., 21,30 фунта стерлингов).

История уголовного правосудия: международный ежегодник, 1 (1981) vi+288 (The Crime and Justice History Group, Inc. совместно с John Jay Press, Нью-Йорк, 24 доллара США).

Р. Б. Аутуэйт (редактор), Брак и общество. Исследования по социальной истории брака (1981), viii+284 (Европа, 19,50 фунтов стерлингов).

TW Moody, Davitt and Irish Revolution 1846–82 (1981), xxiv+674 (Clarendon Press, Oxford, 22,50 фунта стерлингов).

IARCS IOI 2020 | Международная олимпиада по информатике

IARCS IOI 2020 , Индийская ассоциация исследований в области вычислительной техники (IARCS) ежегодно проводит Международную олимпиаду по информатике.Каждая страна-участница обычно отправляет делегацию из четырех участников и двух сопровождающих взрослых. Студенты соревнуются индивидуально и пытаются максимально увеличить свой балл, решая набор задач по информатике в течение двух соревновательных дней. Официальные лица объявили, что в этом году IOI будет проходить в онлайн-режиме. В остальные дни организуются культурно-развлекательные мероприятия. Кандидат может проверить подробную информацию о IARCS IOI 2020 здесь, на этой странице.

IARCS ИОИ 2020

Подписаться на последние обновления

IOI — одна из пяти международных научных олимпиад.Основная цель IOI — стимулировать интерес к информатике (вычислительным наукам) и информационным технологиям. Еще одна важная цель – собрать исключительно талантливых учеников из разных стран и дать им возможность поделиться научным и культурным опытом. Кандидат может проверить важные даты, относящиеся к IARCS IOI 2020, снизу.

События Даты
ЦМСХИ IOI 2020 21 и 21 сен 2020
ЦМСХИ IOI 2021 20 и 27 июня 2021

ЦМСХИ IOI 2020 Важные обновления

Из-за пандемии COVID-19, во-первых, IOI 2020, организованный Сингапуром, будет проводиться онлайн примерно в конце сентября 2020 г., а во-вторых, IOI 2021 будет проводиться Сингапуром на месте, с воскресенья, 20 июня 2021 г., до Воскресенье, 27 июня 2021 г.Даты проведения IARCS IOI 2020 объявлены на официальном сайте. Наряду с информацией за этот год официальные лица также объявили даты и названия принимающих стран в следующем году.

Программа IARCS IOI 2020

Кандидат может ознакомиться с подробной программой IARCS IOI 2020 снизу.

  • Математика – Арифметика и геометрия, дискретные структуры (DS) и другие области математики.
  • Информатика – Основы программирования (PF), Алгоритмы и сложность (AL) и другие области вычислительной техники.
  • Программная инженерия (SE)
  • Компьютерная грамотность
  • Нажмите здесь, чтобы просмотреть подробную программу IARCS IOI 2020.

Как подготовиться к IARCS IOI 2020?

Для подготовки к IARCS IOI 2020 кандидат может пройти и подготовиться в соответствии с приведенными ниже пунктами.

Обучение написанию программ
Чтобы выиграть медаль на IOI, вам необходимо уметь программировать на одном из разрешенных языков программирования, понимать и реализовывать алгоритмы, а также уметь решать проблемы.Конкуренты чаще всего используют язык программирования C++. Если у вас нет опыта программирования, вы можете начать изучать C++.

Узнать об алгоритмах
Далее вам следует приступить к решению различных алгоритмических задач и узнать о структурах данных и популярных алгоритмах.

О IARCS

Индийская ассоциация исследований в области вычислительной техники (IARCS) обеспечивает лидерство в области вычислительной техники в Индии. IARCS признает влияние информатики на школьное образование.Чтобы активно продвигать передовой опыт, он стал участником Международной олимпиады по информатике (IOI). IARCS занимается всеми аспектами подготовки и отбора молодых талантов, которые будут представлять страну на этой престижной Олимпиаде. Он также признает свою роль в исправлении предубеждений в текущей учебной программе по информатике в стране.

Официальный сайт — iarcs.org.in

ОЛИМПИАДА МАИР

.

Добавить комментарий

Ваш адрес email не будет опубликован.